Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16474, 2023.
Article in English | MEDLINE | ID: mdl-38047030

ABSTRACT

Background: Because of swift climate change, drought is a primary environmental factor that substantially diminishes plant productivity. Furthermore, the increased use of chemical fertilizers has given rise to numerous environmental problems and health risks. Presently, there is a transition towards biofertilizers to enhance crops' yield, encompassing medicinal and aromatic varieties. Methods: This study aimed to explore the impacts of plant growth-promoting rhizobacteria (PGPR), both independently and in conjunction with arbuscular mycorrhizal fungi (AMF), on various morphological, physiological, and phytochemical characteristics of Dracocephalum kotschyi Boiss. This experimentation took place under different irrigation conditions. The irrigation schemes encompassed well watering (WW), mild water stress (MWS), and severe water stress (SWS). The study evaluated the effects of various biofertilizers, including AMF, PGPR, and the combined application of both AMF and PGPR (AMF + PGPR), compared to a control group where no biofertilizers were applied. Results: The findings of the study revealed that under water-stress conditions, the dry yield and relative water content of D. kotschyi Boiss. experienced a decline. However, the application of AMF, PGPR, and AMF + PGPR led to an enhancement in dry yield and relative water content compared to the control group. Among the treatments, the co-application of AMF and PGPR in plants subjected to well watering (WW) exhibited the tallest growth (65 cm), the highest leaf count (187), and the most elevated chlorophyll a (0.59 mg g-1 fw) and b (0.24 mg g-1 fw) content. Regarding essential oil production, the maximum content (1.29%) and yield (0.13 g plant -1) were obtained from mild water stress (MWS) treatment. The co-application of AMF and PGPR resulted in the highest essential oil content and yield (1.31% and 0.15 g plant-1, respectively). The analysis of D. kotschyi Boiss. essential oil identified twenty-six compounds, with major constituents including geranyl acetate (11.4-18.88%), alpha-pinene (9.33-15.08%), Bis (2-Ethylhexyl) phthalate (8.43-12.8%), neral (6.80-9.32%), geranial (9.23-11.91%), and limonene (5.56-9.12%). Notably, the highest content of geranyl acetate, geranial, limonene, and alpha-pinene was observed in plants subjected to MWS treatment following AMF + PGPR application. Furthermore, the co-application of AMF, PGPR, and severe water stress (SWS) notably increased the total soluble sugar (TSS) and proline content. In conclusion, the results indicate that the combined application of AMF and PGPR can effectively enhance the quantity and quality of essential oil in D. kotschyi Boiss., particularly when the plants are exposed to water deficit stress conditions.


Subject(s)
Mycorrhizae , Oils, Volatile , Chlorophyll A , Limonene , Dehydration , Plants
2.
Sci Rep ; 13(1): 720, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639680

ABSTRACT

Water deficit stress exposure frequently constrains plant and agri-food production globally. Biostimulants (BSs) can be considered a new tool in mitigating water deficit stress. This study aimed to understand how BSs influence water deficit stress perceived by savory plants (Satureja hortensis L.), an important herb used for nutritional and herbal purposes in the Middle East. Three BS treatments, including bio-fertilizers, humic acid and foliar application of amino acid (AA), were implemented. Each treatment was applied to savory plants using three irrigation regimes (low, moderate and severe water deficit stress FC100, FC75 and FC50, respectively). Foliar application of AA increased dry matter yield, essential oil (EO) content and EO yield by 22%, 31% and 57%, respectively. The greatest EO yields resulted from the moderate (FC75) and severe water deficit stress (FC50) treatments treated with AA. Primary EO constituents included carvacrol (39-43%), gamma-terpinene (27-37%), alpha-terpinene (4-7%) and p-cymene (2-5%). Foliar application of AA enhanced carvacrol, gamma-terpinene, alpha-terpinene and p-cymene content by 6%, 19%, 46% and 18%, respectively. Physiological characteristics were increased with increasing water shortage and application of AA. Moreover, the maximum activities of superoxide dismutase (3.17 unit mg-1 min-1), peroxidase (2.60 unit mg-1 min-1) and catalase (3.08 unit mg-1 min-1) were obtained from plants subjected to severe water deficit stress (FC50) and treated with AA. We conclude that foliar application of AA under water deficit stress conditions would improve EO quantity and quality in savory.


Subject(s)
Oils, Volatile , Satureja , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Dehydration , Satureja/chemistry , Water
3.
Physiol Mol Biol Plants ; 27(10): 2201-2214, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744361

ABSTRACT

Cost-effective exogenous application of some antioxidant, viz. salicylic acid (SA) and ascorbic acid (AA), and essential micronutrient elements like Zn might alleviate the harmful impacts of drought stress. Here, we evaluated the interaction of foliar-sprayed SA (1 mM), AA (10 mM), and Zn (3 g L-1) and irrigation regime (normal irrigation, moderate water stress, and severe water stress) by assaying an array of agronomic, physiological, analytical and biochemical parameters of Moldavian balm (Dracocephalum moldavica L.). Accordingly, the SA and AA treatments reduced the harmful effects of moderate and severe drought stress. Well-watered plants applied with Zn had the highest biomass yield (4642.5 kg ha-1). Severe water stress decreased plant biomass, essential oil (EO) content, EO yield, relative water content, and chlorophyll a content by 37.6%, 23.3%, 47.5%, 35.3%, and 53%, respectively, relative to normal irrigation. Plants treated with Zn under moderate drought stress had the highest EO content. Moderate and severe water stress increased enzymatic antioxidant (catalase, superoxide dismutase, and peroxidase) activities and total soluble sugars and proline contents. In terms of EO composition, SA-treated plants under moderate water stress contained the most geraniol (22.8%) and geranial (26.3%), while Zn-treated plants under severe water stress contained the most geranyl acetate (48.2%). This study demonstrated that foliar application of Zn and SA significantly improves EO productivity and quality in Moldavian balm under moderate water stress. The relevant findings were supported by heatmap clustering, revealing that irrigation regime had main effect on the essential oil compounds and biochemical and physiological parameters. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01084-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...