Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Nat Chem Biol ; 20(5): 646-655, 2024 May.
Article En | MEDLINE | ID: mdl-38347213

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.


Amyloid , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Amyloid/metabolism , Humans , Animals , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Protein Processing, Post-Translational , Cryoelectron Microscopy , Neurons/metabolism , Neurons/pathology
3.
bioRxiv ; 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36945566

The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.

4.
NPJ Parkinsons Dis ; 8(1): 136, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36266318

Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.

5.
Sci Adv ; 8(17): eabn0044, 2022 04 29.
Article En | MEDLINE | ID: mdl-35486726

The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn monomers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly accelerates aSyn fibrillization and results in the formation of fibrils with distinct structural and dynamic properties. In cells, this mutation is associated with higher levels of aSyn, accumulation of pS129, and increased toxicity. In a neuronal seeding model of Lewy body (LB) formation, the E83Q mutation significantly enhances the internalization of fibrils into neurons, induces higher seeding activity, and results in the formation of diverse aSyn pathologies, including the formation of LB-like inclusions that recapitulate the immunohistochemical and morphological features of brainstem LBs observed in brains of patients with Parkinson's disease.


Parkinson Disease , alpha-Synuclein , Humans , Lewy Bodies/chemistry , Lewy Bodies/metabolism , Lewy Bodies/pathology , Mutation , Parkinson Disease/metabolism , Virulence , alpha-Synuclein/genetics
6.
Nat Commun ; 12(1): 6579, 2021 11 12.
Article En | MEDLINE | ID: mdl-34772920

Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.


Cell Nucleus/metabolism , Cytoplasm/metabolism , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Neurons/metabolism , Animals , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/ultrastructure , Huntington Disease/metabolism , Intranuclear Inclusion Bodies/metabolism , Mice , Mice, Inbred C57BL , Peptides/chemistry , Protein Aggregation, Pathological , Proteome
7.
J Mol Biol ; 433(21): 167222, 2021 10 15.
Article En | MEDLINE | ID: mdl-34492254

Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.


Exons , Huntingtin Protein/chemistry , Mutation , Neurons/metabolism , Protein Aggregates , Animals , Cloning, Molecular , Corpus Striatum/cytology , Corpus Striatum/metabolism , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Microscopy, Atomic Force , Neurons/cytology , Phosphorylation , Primary Cell Culture , Protein Conformation, alpha-Helical , Protein Engineering/methods , Protein Folding , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 117(9): 4971-4982, 2020 03 03.
Article En | MEDLINE | ID: mdl-32075919

Parkinson's disease (PD) is characterized by the accumulation of misfolded and aggregated α-synuclein (α-syn) into intraneuronal inclusions named Lewy bodies (LBs). Although it is widely believed that α-syn plays a central role in the pathogenesis of PD, the processes that govern α-syn fibrillization and LB formation remain poorly understood. In this work, we sought to dissect the spatiotemporal events involved in the biogenesis of the LBs at the genetic, molecular, biochemical, structural, and cellular levels. Toward this goal, we further developed a seeding-based model of α-syn fibrillization to generate a neuronal model that reproduces the key events leading to LB formation, including seeding, fibrillization, and the formation of inclusions that recapitulate many of the biochemical, structural, and organizational features of bona fide LBs. Using an integrative omics, biochemical and imaging approach, we dissected the molecular events associated with the different stages of LB formation and their contribution to neuronal dysfunction and degeneration. In addition, we demonstrate that LB formation involves a complex interplay between α-syn fibrillization, posttranslational modifications, and interactions between α-syn aggregates and membranous organelles, including mitochondria, the autophagosome, and endolysosome. Finally, we show that the process of LB formation, rather than simply fibril formation, is one of the major drivers of neurodegeneration through disruption of cellular functions and inducing mitochondria damage and deficits, and synaptic dysfunctions. We believe that this model represents a powerful platform to further investigate the mechanisms of LB formation and clearance and to screen and evaluate therapeutics targeting α-syn aggregation and LB formation.


Lewy Bodies/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Autophagosomes , Humans , Lewy Bodies/pathology , Lysosomes , Mitochondria , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Transcriptome , alpha-Synuclein/genetics
10.
Proc Natl Acad Sci U S A ; 116(5): 1511-1519, 2019 01 29.
Article En | MEDLINE | ID: mdl-30651314

A compelling link is emerging between the posttranslational modification O-GlcNAc and protein aggregation. A prime example is α-synuclein, which forms toxic aggregates that are associated with neurodegeneration in Parkinson's and related diseases. α-Synuclein has been shown to be O-GlcNAcylated at nine different positions in in vivo proteomics experiments from mouse and human tissues. This raises the possibility that O-GlcNAc may alter the aggregation of this protein and could be both an important biological mediator of neurodegeneration and also a therapeutic target. Here, we expand upon our previous research in this area through the chemical synthesis of six site-specifically O-GlcNAcylated variants of α-synuclein. We then use a variety of biochemical experiments to show that O-GlcNAc in general inhibits the aggregation of α-synuclein but can also alter the structure of α-synuclein aggregates in site-specific ways. Additionally, an α-synuclein protein bearing three O-GlcNAc modifications can inhibit the aggregation of unmodified protein. Primary cell culture experiments also show that several of the O-GlcNAc sites inhibit the toxicity of extracellular α-synuclein fibers that are likely culprits in the spread of Parkinson's disease. We also demonstrate that O-GlcNAcylation can inhibit the aggregation of an aggressive mutant of α-synuclein, indicating that therapies currently in development that increase this modification might be applied in animal models that rely on this mutant. Finally, we also show that the pan-selective antibody for O-GlcNAc does not generally recognize this modification on α-synuclein, potentially explaining why it remains understudied. These results support further development of O-GlcNAcylation tools and therapeutic strategies in neurodegenerative diseases.


Acetylglucosamine/metabolism , Acylation/physiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/pathology , alpha-Synuclein/metabolism , Animals , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Pregnancy , Protein Processing, Post-Translational/physiology
11.
Nat Commun ; 8(1): 1678, 2017 11 22.
Article En | MEDLINE | ID: mdl-29162800

The microtubule-associated protein Tau plays a central role in the pathogenesis of Alzheimer's disease. Although Tau interaction with membranes is thought to affect some of its physiological functions and its aggregation properties, the sequence determinants and the structural and functional consequences of such interactions remain poorly understood. Here, we report that the interaction of Tau with vesicles results in the formation of highly stable protein/phospholipid complexes. These complexes are toxic to primary hippocampal cultures and are detected by MC-1, an antibody recognizing pathological Tau conformations. The core of these complexes is comprised of the PHF6* and PHF6 hexapeptide motifs, the latter in a ß-strand conformation. Studies using Tau-derived peptides enabled the design of mutants that disrupt Tau interactions with phospholipids without interfering with its ability to form fibrils, thus providing powerful tools for uncoupling these processes and investigating the role of membrane interactions in regulating Tau function, aggregation and toxicity.


Phospholipids/chemistry , Phospholipids/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Domains , Protein Engineering , Protein Multimerization/genetics , Protein Stability , tau Proteins/toxicity
12.
Cell Death Discov ; 3: 17053, 2017.
Article En | MEDLINE | ID: mdl-28845298

Cells are extremely complex systems able to actively modify their metabolism and behavior in response to environmental conditions and stimuli such as pathogenic agents or drugs. The comprehension of these responses is central to understand the molecular bases of human pathologies, including amyloid misfolding diseases. Conventional bulk biological assays are limited by intrinsic cellular heterogeneity in gene, protein and metabolite expression, and can investigate only indirectly cellular reactions in non-physiological conditions. Here we employ a label-free nanomotion sensor to study single neuroblastoma cells exposed to extracellular monomeric and amyloid α-synuclein species in real-time and in physiological conditions. Combining this technique with fluorescence microscopy, we demonstrate multispecies cooperative cytotoxic effect of amyloids and aggregate-induced loss of cellular membrane integrity. Notably, the method can study cellular reactions and cytotoxicity an order of magnitude faster, and using 100-fold smaller volume of reagents when compared to conventional bulk analyses. This rapidity and sensitivity will allow testing novel pharmacological approaches to stop or delay a wide range of human diseases.

13.
ACS Chem Biol ; 11(9): 2428-37, 2016 09 16.
Article En | MEDLINE | ID: mdl-27356045

Alpha-synuclein is a presynaptic protein of poorly understood function that is linked to both genetic and sporadic forms of Parkinson's disease. We have proposed that alpha-synuclein may function specifically at synaptic vesicles docked at the plasma membrane, and that the broken-helix state of the protein, comprising two antiparallel membrane-bound helices connected by a nonhelical linker, may target the protein to such docked vesicles by spanning between the vesicle and the plasma membrane. Here, we demonstrate that phosphorylation of alpha-synuclein at tyrosine 39, carried out by c-Abl in vivo, may facilitate interconversion of synuclein from the vesicle-bound extended-helix state to the broken-helix state. Specifically, in the presence of lipid vesicles, Y39 phosphorylation leads to decreased binding of a region corresponding to helix-2 of the broken-helix state, potentially freeing this region of the protein to interact with other membrane surfaces. This effect is largely recapitulated by the phosphomimetic mutation Y39E, and expression of this mutant in yeast results in decreased membrane localization. Intriguingly, the effects of Y39 phosphorylation on membrane binding closely resemble those of the recently reported disease linked mutation G51D. These findings suggest that Y39 phosphorylation could modulate functional aspects of alpha-synuclein and perhaps influence pathological aggregation of the protein as well.


Mutation , alpha-Synuclein/metabolism , Cell Membrane/metabolism , In Vitro Techniques , Lipids/chemistry , Magnetic Resonance Spectroscopy , Micelles , Phosphorylation , Protein Structure, Secondary , Sodium Dodecyl Sulfate/chemistry , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
14.
Oncotarget ; 7(28): 44505-44521, 2016 Jul 12.
Article En | MEDLINE | ID: mdl-27283986

Previous studies have associated the overexpression of histone deacetylase 2 (HDAC2) and the presence of TP53 mutations with the progression to advanced stage drug resistant colorectal cancer (CRC). However, the mechanistic link between HDAC2 expression and the TP53 mutational status has remained unexplored. Here, we investigated the function of HDAC2 in drug resistance by assessing the synergistic effects of DNA-targeted chemotherapeutic agents and HDAC inhibitors (HDACis) on two TP53-mutated colorectal adenocarcinoma CRC cell lines (SW480 and HT-29) and on the TP53-wild type carcinoma cell line (HCT116 p53+/+) and its TP53 deficient sub-line (HCT116 p53-/-). We showed that in the untreated SW480 and HT-29 cells the steady-state level of HDAC2 was low compared to a TP53-wild type carcinoma cell line (HCT116 p53+/+). Increased expression of HDAC2 correlated with drug resistance, and depletion by shRNA sensitised the multi-drug resistance cell line HT-29 to CRC chemotherapeutic drugs such as 5-fluorouracil (5-FU) and oxaliplatin (Oxa). Combined treatment with the HDACi suberoylanilide hydroxamic acid plus 5-FU or Oxa reduced the level of HDAC2 expression, modified chromatin structure and induced mitotic cell death in HT-29 cells. Non-invasive bioluminescence imaging revealed significant reductions in xenograft tumour growth with HDAC2 expression level reduced to <50% in treated animals. Elevated levels of histone acetylation on residues H3K9, H4K12 and H4K16 were also found to be associated with resistance to VPA/Dox or SAHA/Dox treatment. Our results suggest that HDAC2 expression rather than the p53 mutation status influences the outcome of combined treatment with a HDACi and DNA-damaging agents in CRC.


Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Synergism , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , HCT116 Cells , HT29 Cells , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/administration & dosage , Histones/metabolism , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Male , Mice, Inbred BALB C , Mice, Nude , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/pharmacology , Oxaliplatin , Vorinostat , Xenograft Model Antitumor Assays/methods
15.
Toxicol Res (Camb) ; 5(2): 407-419, 2016 Mar 01.
Article En | MEDLINE | ID: mdl-30090356

New technologies launch novel materials; besides their performances in products, their health hazards must be tested. This applies to the lead halide perovskite CH3NH3PbI3 as well, which offers fulgurate applications in photovoltaic devices. We report the effects of CH3NH3PbI3 photovoltaic perovskites in human lung adenocarcinoma epithelial cells (A549), human dopaminergic neuroblastoma cells (SH-SY5Y) and murine primary hippocampal neurons by using multiple assays and electron microscopy studies. In cell culture media the major part of the dissolved CH3NH3PbI3 has a strong cell-type dependent effect. Hippocampal primary neurons and neuroblastoma cells suffer a massive apoptotic cell death, whereas exposure to lung epithelial cells dramatically alters the kinetics of proliferation, metabolic activity and cellular morphology without inducing noticeable cell death. Our findings underscore the critical importance of conducting further studies to investigate the effect of short and long-term exposure to CH3NH3PbI3 on health and environment.

16.
EMBO J ; 33(23): 2814-28, 2014 Dec 01.
Article En | MEDLINE | ID: mdl-25361605

IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.


Apoptosis/physiology , I-kappa B Proteins/metabolism , Mitochondrial Membranes/physiology , Models, Biological , NF-kappa B/metabolism , Animals , Blotting, Western , Cell Line , Cytochromes c/metabolism , Female , Flow Cytometry , Hexokinase/metabolism , Humans , Immunoprecipitation , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Mitochondrial Membranes/metabolism , NF-KappaB Inhibitor alpha , Oligonucleotides/genetics , Voltage-Dependent Anion Channel 1/metabolism , Xenograft Model Antitumor Assays
17.
J Biol Chem ; 289(32): 21856-76, 2014 Aug 08.
Article En | MEDLINE | ID: mdl-24936070

Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.


Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutation, Missense , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Animals , Cell Death/genetics , Cell Death/physiology , Cell Line , Cells, Cultured , Humans , Lipid Metabolism , Metals/metabolism , Mice , Mutant Proteins/physiology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Phosphorylation , Protein Aggregates/genetics , Protein Aggregation, Pathological/genetics , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , alpha-Synuclein/physiology
18.
J Cell Sci ; 127(Pt 8): 1816-28, 2014 Apr 15.
Article En | MEDLINE | ID: mdl-24522192

The permeability transition pore (PT-pore) mediates cell death through the dissipation of the mitochondrial membrane potential (ΔΨm). Because the exact composition of the PT-pore is controversial, it is crucial to investigate the actual molecular constituents and regulators of this complex. We found that mitochondrial creatine kinase-1 (CKMT1) is a universal and functionally necessary gatekeeper of the PT-pore, as its depletion induces mitochondrial depolarization and apoptotic cell death. This can be inhibited efficiently by bongkrekic acid, a compound that is widely used to inhibit the PT-pore. However, when the 'classical' PT-pore subunits cyclophilin D and VDAC1 are pharmacologically inhibited or their expression levels reduced, mitochondrial depolarization by CKMT1 depletion remains unaffected. At later stages of drug-induced apoptosis, CKMT1 levels are reduced, suggesting that CKMT1 downregulation acts to reinforce the commitment of cells to apoptosis. A novel high-molecular-mass CKMT1 complex that is distinct from the known CKMT1 octamer disintegrates upon treatment with cytotoxic drugs, concomitant with mitochondrial depolarization. Our study provides evidence that CKMT1 is a key regulator of the PT-pore through a complex that is distinct from the classical PT-pore.


Creatine Kinase/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Apoptosis , Bongkrekic Acid/pharmacology , Caspase 9/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Permeability , Suppressor of Cytokine Signaling Proteins/metabolism , Ubiquitination , Voltage-Dependent Anion Channel 1/metabolism
19.
Hum Mol Genet ; 23(11): 2858-79, 2014 Jun 01.
Article En | MEDLINE | ID: mdl-24412932

Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD.


Parkinson Disease/enzymology , Proto-Oncogene Proteins c-abl/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Animals , Brain/enzymology , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phosphorylation , Proteolysis , Proto-Oncogene Proteins c-abl/genetics , alpha-Synuclein/genetics
20.
Biochim Biophys Acta ; 1823(8): 1353-65, 2012 Aug.
Article En | MEDLINE | ID: mdl-22659130

Dynamic ubiquitination impacts on the degradation of proteins by the proteasome as well as on their effects as signalling factors. Of the many cellular responses that are regulated by changes in ubiquitination, apoptosis has garnered special attention. We have found that USP2a and USP2c, two isoforms of the ubiquitin-specific protease USP2, cause cell death upon ectopic expression. We show that both USP2 isoforms can control the ubiquitination status of many proteins but from a panel of potential targets only the protein level of RIP1 was increased by these enzymes. This effect is responsible for the activity of USP2a and USP2c to cause cell death. Both enzymes likewise de-ubiquitinate TRAF2, a ubiquitin-ligase in the TNFR1 complex. Whilst this and the similar sub-cellular localisations of both enzyme isoforms indicate a substantial overlap of activities, inactivation by RNAi revealed that only the knock-down of USP2c resulted in apoptosis, whilst targeting USP2a did not have any consequence on the cells' survival. Consequently, we focussed our studies on USP2a and found that TRAF2 inhibits USP2a's effect on K48- but not on K63-linked ubiquitin chains. Hence, the ratio between USP2a and TRAF2 protein levels determines the cells' sensitivity to cell death.


Apoptosis , Endopeptidases/physiology , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Line , Endopeptidases/genetics , Endopeptidases/metabolism , Gene Knockdown Techniques , Humans , Isoenzymes/metabolism , Isoenzymes/physiology , Mice , Protein Stability , Protein Transport , Proteolysis , RNA Interference , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/physiology , Ubiquitin Thiolesterase , Ubiquitinated Proteins/metabolism
...