Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Funct ; 42(2): e3957, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468129

ABSTRACT

Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.


Subject(s)
Brain Ischemia , Ischemic Preconditioning , Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Humans , Ischemic Stroke/metabolism , Brain Ischemia/therapy , Brain Ischemia/metabolism , Stroke/therapy , Stroke/metabolism , Ischemic Preconditioning/methods , Mesenchymal Stem Cells/metabolism
2.
Pathol Res Pract ; 255: 155137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38324962

ABSTRACT

Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Drug Resistance, Multiple
3.
Pathol Res Pract ; 254: 155119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309019

ABSTRACT

According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Int J Biol Macromol ; 260(Pt 1): 129367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218269

ABSTRACT

The study focused on creating a novel and environmentally friendly nanocatalyst using cellulose (Cell), ß-Cyclodextrin (BCD), graphene oxide (GO), Cu2O, and Fe3O4.The nanocatalyst was prepared by embedding GO and Cu2O into Cell-BCD hydrogel, followed by the in-situ preparation of Fe3O4 magnetic nanoparticles to magnetize the nanocomposite. The effectiveness of this nanocatalyst was evaluated in the one-pot, three-component symmetric Hantzsch reaction for synthesizing 1,4-dihydropyridine derivatives with high yield under mild conditions. This novel nanocatalyst has the potential for broad application in various organic transformations due to its effective catalytic activity, eco-friendly nature, and ease of recovery.


Subject(s)
Cyclodextrins , Graphite , Nanocomposites , Nanoparticles , Hydrogels , Magnetic Phenomena , Cellulose
SELECTION OF CITATIONS
SEARCH DETAIL
...