Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Lancet Respir Med ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38885686

ABSTRACT

Although smoking is the primary cause of lung cancer, only about 15% of lifelong smokers develop the disease. Moreover, a substantial proportion of lung cancer cases occur in never-smokers, highlighting the potential role of inherited genetic factors in the cause of lung cancer. Lung cancer is significantly more common among those with a positive family history, especially for early-onset disease. Therefore, the presence of pathogenic germline variants might act synergistically with environmental factors. The incorporation of next-generation sequencing in routine clinical practice has led to the identification of cancer-predisposing mutations in an increasing proportion of patients with lung cancer. This Review summarises the landscape of germline susceptibility in lung cancer and highlights the importance of germline testing in patients diagnosed with the disease, which has the potential to identify individuals at risk, with implications for tailored therapeutic approaches and successful prevention through genetic counselling and screening.

2.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891831

ABSTRACT

SCN1A, the gene encoding for the Nav1.1 channel, exhibits dominant interneuron-specific expression, whereby variants disrupting the channel's function affect the initiation and propagation of action potentials and neuronal excitability causing various types of epilepsy. Dravet syndrome (DS), the first described clinical presentation of SCN1A channelopathy, is characterized by severe myoclonic epilepsy in infancy (SMEI). Variants' characteristics and other genetic or epigenetic factors lead to extreme clinical heterogeneity, ranging from non-epileptic conditions to developmental and epileptic encephalopathy (DEE). This current study reports on findings from 343 patients referred by physicians in hospitals and tertiary care centers in Greece between 2017 and 2023. Positive family history for specific neurologic disorders was disclosed in 89 cases and the one common clinical feature was the onset of seizures, at a mean age of 17 months (range from birth to 15 years old). Most patients were specifically referred for SCN1A investigation (Sanger Sequencing and MLPA) and only five for next generation sequencing. Twenty-six SCN1A variants were detected, including nine novel causative variants (c.4567A>Τ, c.5564C>A, c.2176+2T>C, c.3646G>C, c.4331C>A, c.1130_1131delGAinsAC, c.1574_1580delCTGAGGA, c.4620A>G and c.5462A>C), and are herein presented, along with subsequent genotype-phenotype associations. The identification of novel variants complements SCN1A databases extending our expertise on genetic counseling and patient and family management including gene-based personalized interventions.


Subject(s)
Epilepsy , NAV1.1 Voltage-Gated Sodium Channel , Phenotype , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Male , Female , Child , Adolescent , Infant , Child, Preschool , Epilepsy/genetics , Infant, Newborn , Mutation , Adult , Young Adult
3.
Genes (Basel) ; 15(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38790154

ABSTRACT

Infantile onset transient hypomyelination (IOTH) is a rare form of leukodystrophy that is associated with transient motor impairment and delayed central nervous system myelination. Here, we report a case of a new mutation in the transmembrane protein 63A (TMEM63A) gene identified using Whole-Exome Sequencing (WES) in an 8.5-year-old boy with clinical symptoms similar to IOTH. The patient exhibited a mild developmental delay, including hypotonia and delayed motor milestones, as well as some notable phenotypic characteristics, such as macrocephaly and macrosomia. Despite the absence of early neuroimaging, genetic testing revealed a paternally inherited variant in TMEM63A (NM_14698.3:c.220A>T;p:(Arg74*)), potentially linked to infantile transient hypomyelinating leukodystrophy type 19. Our findings in this study and the patient's favorable clinical course underscore the potential for successful myelination even with delayed initiation and may contribute to a better understanding of the genotype-phenotype correlation in IOTH, emphasizing the importance of genetic analysis in unresolved developmental delay cases and providing critical insights for accurate diagnosis, prognosis and potential therapeutic strategies in rare leukodystrophies.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases , Membrane Proteins , Child , Humans , Male , Codon, Nonsense/genetics , Exome Sequencing , Genetic Association Studies , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Heterozygote , Membrane Proteins/genetics
4.
Mov Disord ; 39(4): 715-722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357851

ABSTRACT

INTRODUCTION: Pathogenic variants in parkin (PRKN gene) are the second most prevalent known monogenic cause of Parkinson's disease (PD). How monoallelic or biallelic pathogenic variants in the PRKN gene may affect its transcription in patient-derived biological material has not been systematically studied. METHODS: PRKN mRNA expression levels were measured with real-time polymerase chain reaction (RT-PCR) in peripheral blood mononuclear cells (PBMCs). PBMCs were derived from PRKN-mutated PD patients (PRKN-PD) (n = 12), sporadic PD (sPD) (n = 21) and healthy controls (n = 21). Six of the PRKN-PD patients were heterozygous, four were compound heterozygous, and two were homozygous for PRKN variants. RESULTS: A statistically significant decrease in PRKN expression levels was present, compared to healthy controls and sPD, in heterozygous (P = 0.019 and 0.031 respectively) and biallelic (P < 0.001 for both) PRKN-PD. PRKN expression levels in biallelic PD patients were uniformly very low and were reduced, albeit not significantly, compared to heterozygotes. Based on receiver operating characteristic analysis, low PRKN expression levels were a sensitive and extremely specific indicator for the presence of PRKN pathogenic variants. CONCLUSIONS: Assessment of PRKN mRNA levels in PBMCs may be a useful way to screen for biallelic pathogenic variants in the PRKN gene. Suspicion for certain variants in a heterozygous state may also be raised based on low PRKN mRNA levels. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Leukocytes, Mononuclear , Parkinson Disease , RNA, Messenger , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Parkinson Disease/genetics , Parkinson Disease/blood , Leukocytes, Mononuclear/metabolism , Male , Female , RNA, Messenger/metabolism , Middle Aged , Aged , Adult , Mutation
5.
Genes (Basel) ; 14(8)2023 07 25.
Article in English | MEDLINE | ID: mdl-37628571

ABSTRACT

Chromosomal microarray analysis (CMA) is considered a first-tier test for patients with developmental disabilities and congenital anomalies and is also routinely applied in prenatal diagnosis. The current consensus size cut-off for reporting copy number variants (CNVs) in the prenatal setting ranges from 200 Kb to 400 Kb, with the intention of minimizing the impact of variants of uncertain significance (VUS). Very limited data are currently available on the application of higher resolution platforms prenatally. The aim of this study is to investigate the feasibility and impact of applying high-resolution CMA in the prenatal setting. To that end, we report on the outcomes of applying CMA with a size cut-off of 20 Kb in 250 prenatal samples and discuss the findings and diagnostic yield and also provide follow-up for cases with variants of uncertain significance. Overall, 19.6% (49) showed one or more chromosomal abnormalities, with the findings classified as Pathogenic (P) or Likely Pathogenic (LP) in 15.6% and as VUS in 4%. When excluding the cases with known familial aberrations, the diagnostic yield was 12%. The smallest aberration detected was a 32 Kb duplication of the 16p11.2 region. In conclusion, this study demonstrates that prenatal diagnosis with a high-resolution aCGH platform can reliably detect smaller CNVs that are often associated with neurodevelopmental phenotypes while providing an increased diagnostic yield, regardless of the indication for testing, with only a marginal increase in the VUS incidence. Thus, it can be an important tool in the prenatal setting.


Subject(s)
Chromosome Aberrations , Prenatal Diagnosis , Female , Pregnancy , Humans , Microarray Analysis , Phenotype , Vitamins
6.
Genes (Basel) ; 14(7)2023 07 21.
Article in English | MEDLINE | ID: mdl-37510394

ABSTRACT

Whole-Exome Sequencing (WES) has proven valuable in the characterization of underlying genetic defects in most rare diseases (RDs). Copy Number Variants (CNVs) were initially thought to escape detection. Recent technological advances enabled CNV calling from WES data with the use of accurate and highly sensitive bioinformatic tools. Amongst 920 patients referred for WES, 454 unresolved cases were further analysed using the ExomeDepth algorithm. CNVs were called, evaluated and categorized according to ACMG/ClinGen recommendations. Causative CNVs were identified in 40 patients, increasing the diagnostic yield of WES from 50.7% (466/920) to 55% (506/920). Twenty-two CNVs were available for validation and were all confirmed; of these, five were novel. Implementation of the ExomeDepth tool promoted effective identification of phenotype-relevant and/or novel CNVs. Among the advantages of calling CNVs from WES data, characterization of complex genotypes comprising both CNVs and SNVs minimizes cost and time to final diagnosis, while allowing differentiation between true or false homozygosity, as well as compound heterozygosity of variants in AR genes. The use of a specific algorithm for calling CNVs from WES data enables ancillary detection of different types of causative genetic variants, making WES a critical first-tier diagnostic test for patients with RDs.


Subject(s)
Algorithms , Rare Diseases , Humans , Exome Sequencing , DNA Copy Number Variations/genetics , Data Analysis
8.
Nat Commun ; 14(1): 2026, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041148

ABSTRACT

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Subject(s)
Goldenhar Syndrome , Animals , Mice , Goldenhar Syndrome/pathology , Facial Asymmetry , Pedigree , Forkhead Transcription Factors
9.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36724785

ABSTRACT

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Subject(s)
Microcephaly , Movement Disorders , Neurodevelopmental Disorders , Humans , Intracellular Signaling Peptides and Proteins , HEK293 Cells , TOR Serine-Threonine Kinases
10.
Expert Rev Mol Diagn ; 23(1): 85-103, 2023 01.
Article in English | MEDLINE | ID: mdl-36714946

ABSTRACT

OBJECTIVES: Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS: This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS: Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION: Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.


Subject(s)
Epilepsy , Exome , Humans , Exome/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Phenotype , DNA Copy Number Variations , Genomics
11.
Orphanet J Rare Dis ; 17(1): 284, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854389

ABSTRACT

BACKGROUND: Congenital portosystemic shunts (CPSS) are rare vascular malformations associated with the risk of life-threatening systemic conditions, which remain underdiagnosed and often are identified after considerable diagnostic delay. CPSS are characterized by multiple signs and symptoms, often masquerading as other conditions, progressing over time if the shunt remains patent. Which patients will benefit from shunt closure remains to be clarified, as does the timing and method of closure. In addition, the etiology and pathophysiology of CPSS are both unknowns. This rare disorder needs the strength of numbers to answer these questions, which is the purpose of the international registry of CPSS (IRCPSS). METHOD: A retrospective and prospective registry was designed using secuTrial® by the ISO certified Clinical Research Unit. Given that a significant number of cases entered in the registry are retrospective, participants have the opportunity to use a semi-structured minimal or complete data set to facilitate data entry. In addition, the design allows subjects to be entered into the IRCPSS according to clinically relevant events. Emphasis is on longitudinal follow-up of signs and symptoms, which is paramount to garner clinically relevant information to eventually orient patient management. The IRCPSS includes also three specific forms to capture essential radiological, surgical, and cardiopulmonary data as many times as relevant, which are completed by the specialists themselves. Finally, connecting the clinical data registry with a safe image repository, using state-of-the-art pseudonymization software, was another major focus of development. Data quality and stewardship is ensured by a steering committee. All centers participating in the IRCPSS have signed a memorandum of understanding and obtained their own ethical approval. CONCLUSION: Through state-of-the-art management of data and imaging, we have developed a practical, user-friendly, international registry to study CPSS in neonates, children, and adults. Via this multicenter and international effort, we will be ready to answer meaningful and urgent questions regarding the management of patients with CPSS, a condition often ridden with significant diagnostic delay contributing to a severe clinical course.


Subject(s)
Portal Vein , Vascular Malformations , Adult , Child , Delayed Diagnosis , Humans , Infant, Newborn , Portal Vein/abnormalities , Portal Vein/surgery , Registries , Retrospective Studies
12.
Cancers (Basel) ; 13(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070013

ABSTRACT

Recent advances in sequencing technologies have allowed the in-depth molecular study of tumors, even at the single cell level. Sequencing efforts have uncovered a previously unappreciated heterogeneity among tumor cells, which has been postulated to be the driving force of tumor evolution and to facilitate recurrence, metastasis, and drug resistance. In the current study, focused on early-stage operable non-small cell lung cancer, we used tumor growth in patient-derived xenograft (PDX) models in mice as a fast-forward tumor evolution process to investigate the molecular characteristics of tumor cells that grow in mice, as well as the parameters that affect the grafting efficiency. We found that squamous cell carcinomas grafted significantly more efficiently compared with adenocarcinomas. Advanced stage, patient age and primary tumor size were positively correlated with grafting. Additionally, we isolated and characterized circulating tumor cells (CTC) from patients' peripheral blood and found that the presence of CTCs expressing epithelial-to-mesenchymal (EMT) markers correlated with the grafting potential. Interestingly, exome sequencing of the PDX tumor identified genetic alterations in DNA repair and genome integrity genes that were under-represented in the human primary counterpart. In conclusion, through the generation of a PDX biobank of NSCLC, we identified the clinical and molecular properties of tumors that affected growth in mice.

13.
Microorganisms ; 9(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33800997

ABSTRACT

The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin-antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.

14.
Genet Med ; 23(7): 1246-1254, 2021 07.
Article in English | MEDLINE | ID: mdl-33824500

ABSTRACT

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Exome Sequencing
15.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32822602

ABSTRACT

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Subject(s)
Atrophy/genetics , Cerebellar Diseases/genetics , Intellectual Disability/genetics , Lysine Acetyltransferase 5/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Atrophy/diagnostic imaging , Atrophy/physiopathology , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/physiopathology , Child, Preschool , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , DNA Repair/genetics , Epilepsy/diagnostic imaging , Epilepsy/genetics , Epilepsy/physiopathology , Female , Heterozygote , Histones/genetics , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Male , Mutation, Missense/genetics , Protein Processing, Post-Translational/genetics
16.
Hum Mol Genet ; 29(4): 618-623, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31903486

ABSTRACT

In a consanguineous Pakistani family with two affected individuals, a homozygous variant Gly399Val in the eighth transmembrane domain of the taurine transporter SLC6A6 was identified resulting in a hypomorph transporting capacity of ~15% compared with normal. Three-dimensional modeling of this variant has indicated that it likely causes displacement of the Tyr138 (TM3) side chain, important for transport of taurine. The affected individuals presented with rapidly progressive childhood retinal degeneration, cardiomyopathy and almost undetectable plasma taurine levels. Oral taurine supplementation of 100 mg/kg/day resulted in maintenance of normal blood taurine levels. Following approval by the ethics committee, a long-term supplementation treatment was introduced. Remarkably, after 24-months, the cardiomyopathy was corrected in both affected siblings, and in the 6-years-old, the retinal degeneration was arrested, and the vision was clinically improved. Similar therapeutic approaches could be employed in Mendelian phenotypes caused by the dysfunction of the hundreds of other molecular transporters.


Subject(s)
Cardiomyopathies/drug therapy , Membrane Glycoproteins/deficiency , Membrane Transport Proteins/deficiency , Retinal Degeneration/drug therapy , Taurine/therapeutic use , Adolescent , Biological Transport , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Child , Female , Humans , Male , Pedigree , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
17.
Int J Cancer ; 146(1): 281-294, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31286493

ABSTRACT

DNA/RNA-based classification of bladder cancer (BC) supports the existence of multiple molecular subtypes, while investigations at the protein level are scarce. Here, we aimed to investigate if Nonmuscle Invasive Bladder Cancer (NMIBC) can be stratified to biologically meaningful groups based on the proteome. Tissue specimens from 117 patients at primary diagnosis (98 with NMIBC and 19 with MIBC), were processed for high-resolution proteomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteomics output was subjected to unsupervised consensus clustering, principal component analysis (PCA) and investigation of subtype-specific features, pathways, and gene sets. NMIBC patients were optimally stratified to three NMIBC proteomic subtypes (NPS), differing in size, clinicopathologic and molecular backgrounds: NPS1 (mostly high stage/grade/risk samples) was the smallest in size (17/98) and overexpressed proteins reflective of an immune/inflammatory phenotype, involved in cell proliferation, unfolded protein response and DNA damage response, whereas NPS2 (mixed stage/grade/risk composition) presented with an infiltrated/mesenchymal profile. NPS3 was rich in luminal/differentiation markers, in line with its pathological composition (mostly low stage/grade/risk samples). PCA revealed a close proximity of NPS1 and conversely, remoteness of NPS3 to the proteome of MIBC. Proteins distinguishing these two extreme subtypes were also found to consistently differ at the mRNA levels between high and low-risk subtypes of the UROMOL and LUND cohorts. Collectively, our study identifies three proteomic NMIBC subtypes and following a cross-omics validation in two independent cohorts, shortlists molecular features meriting further investigation for their biomarker or potentially therapeutic value.


Subject(s)
Proteome/metabolism , Urinary Bladder Neoplasms/metabolism , Aged , Biomarkers, Tumor/metabolism , Chromatography, Liquid/methods , Disease Progression , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Kaplan-Meier Estimate , Male , Phenotype , Prognosis , Proteomics/methods , RNA, Messenger/metabolism , Tandem Mass Spectrometry/methods , Urinary Bladder Neoplasms/pathology
18.
Nat Commun ; 10(1): 4495, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582743

ABSTRACT

Aneuploidy is a major source of gene dosage imbalance due to copy number alterations (CNA), and viable human trisomies are model disorders of altered gene expression. We study gene and allele-specific expression (ASE) of 9668 single-cell fibroblasts from trisomy 21 (T21) discordant twins and from mosaic T21, T18, T13 and T8. We examine 928 single cells with deep scRNAseq. Expected and observed overexpression of trisomic genes in trisomic vs. diploid bulk RNAseq is not detectable in trisomic vs. diploid single cells. Instead, for trisomic genes with low-to-average expression, their altered gene dosage is mainly due to the higher fraction of trisomic cells simultaneously expressing these genes, in agreement with a stochastic 2-state burst-like model of transcription. These results, confirmed in a further analysis of 8740 single fibroblasts with shallow scRNAseq, suggest that the specific transcriptional profile of each gene contributes to the phenotypic variability of trisomies. We propose an improved model to understand the effects of CNA and, generally, of gene regulation on gene dosage imbalance.


Subject(s)
DNA Copy Number Variations , Gene Dosage , Models, Genetic , Transcriptome/genetics , Trisomy/genetics , Alleles , Chromosomes, Human, Pair 13/genetics , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 8/genetics , Down Syndrome/genetics , Female , Fibroblasts , Gene Expression Profiling , Humans , Male , Mosaicism , Phenotype , RNA-Seq , Single-Cell Analysis
19.
Am J Hum Genet ; 105(5): 907-920, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31607425

ABSTRACT

We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.


Subject(s)
Developmental Disabilities/genetics , Dwarfism/genetics , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Mutation/genetics , Adult , Alleles , Animals , Child , Dendritic Spines/genetics , Drosophila/genetics , Female , Humans , Male , Mice , Saudi Arabia , Synapses/genetics , Young Adult
20.
Nutrients ; 11(8)2019 08 20.
Article in English | MEDLINE | ID: mdl-31434255

ABSTRACT

Higher circulating 25-hydroxyvitamin D levels (25(OH)D) have been found to be associated with lower risk for colorectal cancer (CRC) in prospective studies. Whether this association is modified by genetic variation in genes related to vitamin D metabolism and action has not been well studied in humans. We investigated 1307 functional and tagging single-nucleotide polymorphisms (SNPs; individually, and by gene/pathway) in 86 vitamin D-related genes in 1420 incident CRC cases matched to controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. We also evaluated the association between these SNPs and circulating 25(OH)D in a subset of controls. We confirmed previously reported CRC risk associations between SNPs in the VDR, GC, and CYP27B1 genes. We also identified additional associations with 25(OH)D, as well as CRC risk, and several potentially novel SNPs in genes related to vitamin D transport and action (LRP2, CUBN, NCOA7, and HDAC9). However, none of these SNPs were statistically significant after Benjamini-Hochberg (BH) multiple testing correction. When assessed by a priori defined functional pathways, tumor growth factor ß (TGFß) signaling was associated with CRC risk (P ≤ 0.001), with most statistically significant genes being SMAD7 (PBH = 0.008) and SMAD3 (PBH = 0.008), and 18 SNPs in the vitamin D receptor (VDR) binding sites (P = 0.036). The 25(OH)D-gene pathway analysis suggested that genetic variants in the genes related to VDR complex formation and transcriptional activity are associated with CRC depending on 25(OH)D levels (interaction P = 0.041). Additional studies in large populations and consortia, especially with measured circulating 25(OH)D, are needed to confirm our findings.


Subject(s)
Colorectal Neoplasms/epidemiology , Vitamin D/blood , Vitamin D/genetics , Aged , Case-Control Studies , Colorectal Neoplasms/genetics , Europe/epidemiology , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Nutritional Physiological Phenomena , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Risk Factors , Signal Transduction , Transforming Growth Factor beta/metabolism , Vitamin D/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...