Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Chaos ; 32(3): 033120, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364841

ABSTRACT

Recent studies have revealed the interplay between the structure of network circuits with fibration symmetries and the functionality of biological networks within which they have been identified. The presence of these symmetries in complex networks predicts the phenomenon of cluster synchronization, which produces patterns of a synchronized group of nodes. Here, we present a fast, and memory efficient, algorithm to identify fibration symmetries in networks. The algorithm is particularly suitable for large networks since it has a runtime of complexity O(Mlog⁡N) and requires O(M+N) of memory resources, where N and M are the number of nodes and edges in the network, respectively. The algorithm is a modification of the so-called refinement paradigm to identify circuits that are symmetrical to information flow (i.e., fibers) by finding the coarsest refinement partition over the network. Finally, we show that the algorithm provides an optimal procedure for identifying fibers, overcoming current approaches used in the literature.


Subject(s)
Algorithms
2.
PLoS One ; 16(12): e0260236, 2021.
Article in English | MEDLINE | ID: mdl-34898624

ABSTRACT

Reading is a complex cognitive process that involves primary oculomotor function and high-level activities like attention focus and language processing. When we read, our eyes move by primary physiological functions while responding to language-processing demands. In fact, the eyes perform discontinuous twofold movements, namely, successive long jumps (saccades) interposed by small steps (fixations) in which the gaze "scans" confined locations. It is only through the fixations that information is effectively captured for brain processing. Since individuals can express similar as well as entirely different opinions about a given text, it is therefore expected that the form, content and style of a text could induce different eye-movement patterns among people. A question that naturally arises is whether these individuals' behaviours are correlated, so that eye-tracking while reading can be used as a proxy for text subjective properties. Here we perform a set of eye-tracking experiments with a group of individuals reading different types of texts, including children stories, random word generated texts and excerpts from literature work. In parallel, an extensive Internet survey was conducted for categorizing these texts in terms of their complexity and coherence, considering a large number of individuals selected according to different ages, gender and levels of education. The computational analysis of the fixation maps obtained from the gaze trajectories of the subjects for a given text reveals that the average "magnetization" of the fixation configurations correlates strongly with their complexity observed in the survey. Moreover, we perform a thermodynamic analysis using the Maximum-Entropy Model and find that coherent texts were closer to their corresponding "critical points" than non-coherent ones, as computed from the Pairwise Maximum-Entropy method, suggesting that different texts may induce distinct cohesive reading activities.


Subject(s)
Eye-Tracking Technology , Adolescent , Adult , Eye Movements/physiology , Female , Humans , Male , Models, Theoretical , Reading , Young Adult
3.
J R Soc Interface ; 17(171): 20200691, 2020 10.
Article in English | MEDLINE | ID: mdl-33109025

ABSTRACT

Dengue is a vector-borne disease transmitted by the Aedes genus mosquito. It causes financial burdens on public health systems and considerable morbidity and mortality. Tropical regions in the Americas and Asia are the areas most affected by the virus. Fortaleza is a city with approximately 2.6 million inhabitants in northeastern Brazil that, during the recent decades, has been suffering from endemic dengue transmission, interspersed with larger epidemics. The objective of this paper is to study the impact of human mobility in urban areas on the spread of the dengue virus, and to test whether human mobility data can be used to improve predictions of dengue virus transmission at the neighbourhood level. We present two distinct forecasting systems for dengue transmission in Fortaleza: the first using artificial neural network methods and the second developed using a mechanistic model of disease transmission. We then present enhanced versions of the two forecasting systems that incorporate bus transportation data cataloguing movement among 119 neighbourhoods in Fortaleza. Each forecasting system was used to perform retrospective forecasts for historical dengue outbreaks from 2007 to 2015. Results show that both artificial neural networks and mechanistic models can accurately forecast dengue cases, and that the inclusion of human mobility data substantially improves the performance of both forecasting systems. While the mechanistic models perform better in capturing seasons with large-scale outbreaks, the neural networks more accurately forecast outbreak peak timing, peak intensity and annual dengue time series. These results have two practical implications: they support the creation of public policies from the use of the models created here to combat the disease and help to understand the impact of urban mobility on the epidemic in large cities.


Subject(s)
Aedes , Dengue , Animals , Brazil/epidemiology , Cities/epidemiology , Dengue/epidemiology , Disease Outbreaks , Humans , Mosquito Vectors , Retrospective Studies
4.
PLoS One ; 13(8): e0201654, 2018.
Article in English | MEDLINE | ID: mdl-30133469

ABSTRACT

The increasing cost of electoral campaigns raises the need for effective campaign planning and a precise understanding of the return of such investment. Interestingly, despite the strong impact of elections on our daily lives, how this investment is translated into votes is still unknown. By performing data analysis and modeling, we show that top candidates spend more money per vote than the less successful and poorer candidates, a relation that discloses a diseconomy of scale. We demonstrate that such electoral diseconomy arises from the competition between candidates due to inefficient campaign expenditure. Our approach succeeds in two important tests. First, it reveals that the statistical pattern in the vote distribution of candidates can be explained in terms of the independently conceived, but similarly skewed distribution of money campaign. Second, using a heuristic argument, we are able to explain the observed turnout percentage for a given election of approximately 63% in average. This result is in good agreement with the average turnout rate obtained from real data. Due to its generality, we expect that our approach can be applied to a wide range of problems concerning the adoption process in marketing campaigns.


Subject(s)
Politics , Brazil , Humans , Models, Economic
5.
R Soc Open Sci ; 5(5): 180468, 2018 May.
Article in English | MEDLINE | ID: mdl-29892464

ABSTRACT

The shape of urban settlements plays a fundamental role in their sustainable planning. Properly defining the boundaries of cities is challenging and remains an open problem in the science of cities. Here, we propose a worldwide model to define urban settlements beyond their administrative boundaries through a bottom-up approach that takes into account geographical biases intrinsically associated with most societies around the world, and reflected in their different regional growing dynamics. The generality of the model allows one to study the scaling laws of cities at all geographical levels: countries, continents and the entire world. Our definition of cities is robust and holds to one of the most famous results in social sciences: Zipf's law. According to our results, the largest cities in the world are not in line with what was recently reported by the United Nations. For example, we find that the largest city in the world is an agglomeration of several small settlements close to each other, connecting three large settlements: Alexandria, Cairo and Luxor. Our definition of cities opens the doors to the study of the economy of cities in a systematic way independently of arbitrary definitions that employ administrative boundaries.

6.
Nature ; 524(7563): 65-8, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26131931

ABSTRACT

The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.


Subject(s)
Models, Theoretical , Social Networking , Algorithms , Cell Phone/statistics & numerical data , Humans , Mexico , Social Media/statistics & numerical data , Telephone/statistics & numerical data , Vaccination/statistics & numerical data
7.
Sci Rep ; 4: 6239, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25174706

ABSTRACT

By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the connections between people and society. Under the same framework, he considered that crime is bound up with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the population of a Brazilian city results in an average increment of 135% in the number of homicides, rather than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes. Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior between the number of suicides and city population, with allometric power-law exponents, ß = 0.84 ± 0.02 and 0.87 ± 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the Metropolitan Statistical Areas (MSAs), we obtain ß = 0.88 ± 0.01.


Subject(s)
Suicide/statistics & numerical data , Brazil , Cities/statistics & numerical data , Homicide/statistics & numerical data , Humans
8.
Sci Rep ; 4: 4235, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24577263

ABSTRACT

We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent ß = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias.


Subject(s)
Air Pollution/statistics & numerical data , Cities/statistics & numerical data , Population Density , Urban Population/statistics & numerical data , Vehicle Emissions/analysis , Humans , United States
9.
Proc Natl Acad Sci U S A ; 107(13): 5750-5, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20220102

ABSTRACT

Cell differentiation in multicellular organisms is a complex process whose mechanism can be understood by a reductionist approach, in which the individual processes that control the generation of different cell types are identified. Alternatively, a large-scale approach in search of different organizational features of the growth stages promises to reveal its modular global structure with the goal of discovering previously unknown relations between cell types. Here, we sort and analyze a large set of scattered data to construct the network of human cell differentiation (NHCD) based on cell types (nodes) and differentiation steps (links) from the fertilized egg to a developed human. We discover a dynamical law of critical branching that reveals a self-similar regularity in the modular organization of the network, and allows us to observe the network at different scales. The emerging picture clearly identifies clusters of cell types following a hierarchical organization, ranging from sub-modules to super-modules of specialized tissues and organs on varying scales. This discovery will allow one to treat the development of a particular cell function in the context of the complex network of human development as a whole. Our results point to an integrated large-scale view of the network of cell types systematically revealing ties between previously unrelated domains in organ functions.


Subject(s)
Cell Differentiation , Models, Biological , Algorithms , Embryonic Development , Female , Fractals , Humans , Pregnancy , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL