Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 527, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225234

ABSTRACT

The development of artificial spider silk with properties similar to native silk has been a challenging task in materials science. In this study, we use a microfluidic device to create continuous fibers based on recombinant MaSp2 spidroin. The strategy incorporates ion-induced liquid-liquid phase separation, pH-driven fibrillation, and shear-dependent induction of ß-sheet formation. We find that a threshold shear stress of approximately 72 Pa is required for fiber formation, and that ß-sheet formation is dependent on the presence of polyalanine blocks in the repetitive sequence. The MaSp2 fiber formed has a ß-sheet content (29.2%) comparable to that of native dragline with a shear stress requirement of 111 Pa. Interestingly, the polyalanine blocks have limited influence on the occurrence of liquid-liquid phase separation and hierarchical structure. These results offer insights into the shear-induced crystallization and sequence-structure relationship of spider silk and have significant implications for the rational design of artificially spun fibers.


Subject(s)
Fibroins , Spiders , Animals , Silk/chemistry , Microfluidics , Fibroins/chemistry , Repetitive Sequences, Nucleic Acid
2.
Biomol NMR Assign ; 17(2): 249-255, 2023 12.
Article in English | MEDLINE | ID: mdl-37668860

ABSTRACT

Spider dragline silk has attracted great interest due to its outstanding mechanical properties, which exceed those of man-made synthetic materials. Dragline silk, which is composed of at least major ampullate spider silk protein 1 and 2 (MaSp1 and MaSp2), contains a long repetitive domain flanked by N-terminal and C-terminal domains (NTD and CTD). Despite the small size of the CTD, this domain plays a crucial role as a molecular switch that regulates and directs spider silk self-assembly. In this study, we report the 1H, 13C, and 15N chemical shift assignments of the Latrodectus hesperus MaSp2 CTD in dimeric form at pH 7. Our solution NMR data demonstrated that this protein contains five helix regions connected by a flexible linker.


Subject(s)
Fibroins , Spiders , Humans , Animals , Nuclear Magnetic Resonance, Biomolecular , Fibroins/chemistry , Silk/chemistry , Silk/metabolism , Magnetic Resonance Spectroscopy , Spiders/metabolism
3.
Biomacromolecules ; 24(4): 1604-1616, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36990448

ABSTRACT

Spider dragline silk is a remarkably tough biomaterial and composed primarily of spidroins MaSp1 and MaSp2. During fiber self-assembly, the spidroin N-terminal domains (NTDs) undergo rapid dimerization in response to a pH gradient. However, obtaining a detailed understanding of this mechanism has been hampered by a lack of direct evidence regarding the protonation states of key ionic residues. Here, we elucidated the solution structures of MaSp1 and MaSp2 NTDs from Trichonephila clavipes and determined the experimental pKa values of conserved residues involved in dimerization using NMR. Surprisingly, we found that the Asp40 located on an acidic cluster protonates at an unusually high pH (∼6.5-7.1), suggesting the first step in the pH response. Then, protonation of Glu119 and Glu79 follows, with pKas above their intrinsic values, contributing toward stable dimer formation. We propose that exploiting the atypical pKa values is a strategy to achieve tight spatiotemporal control of spider silk self-assembly.


Subject(s)
Fibroins , Spiders , Animals , Fibroins/chemistry , Silk/chemistry , Dimerization , Magnetic Resonance Spectroscopy , Spiders/metabolism
4.
Sci Adv ; 8(41): eabo6043, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36223455

ABSTRACT

Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

5.
Biomacromolecules ; 23(5): 1827-1840, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35378031

ABSTRACT

The tiny spider makes dragline silk fibers with unbeatable toughness, all under the most innocuous conditions. Scientists have persistently tried to emulate its natural silk spinning process using recombinant proteins with a view toward creating a new wave of smart materials, yet most efforts have fallen short of attaining the native fiber's excellent mechanical properties. One reason for these shortcomings may be that artificial spider silk systems tend to be overly simplified and may not sufficiently take into account the true complexity of the underlying protein sequences and of the multidimensional aspects of the natural self-assembly process that give rise to the hierarchically structured fibers. Here, we discuss recent findings regarding the material constituents of spider dragline silk, including novel spidroin subtypes, nonspidroin proteins, and possible involvement of post-translational modifications, which together suggest a complexity that transcends the two-component MaSp1/MaSp2 system. We subsequently consider insights into the spidroin domain functions, structures, and overall mechanisms for the rapid transition from disordered soluble protein into a highly organized fiber, including the possibility of viewing spider silk self-assembly through a framework relevant to biomolecular condensates. Finally, we consider the concept of "biomimetics" as it applies to artificial spider silk production with a focus on key practical aspects of design and evaluation that may hopefully inform efforts to more closely reproduce the remarkable structure and function of the native silk fiber using artificial methods.


Subject(s)
Fibroins , Spiders , Amino Acid Sequence , Animals , Fibroins/chemistry , Fibroins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Silk/chemistry , Spiders/metabolism
6.
Open Biol ; 11(12): 210242, 2021 12.
Article in English | MEDLINE | ID: mdl-34932907

ABSTRACT

Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m-1 and over 50% extensibility, and can build river-bridging webs with a size of 2.8 m2. Recent studies have suggested that specific spidroins expressed in C. darwini are responsible for the mechanical properties of its silk. Therefore, a more comprehensive investigation of spidroin sequences, silk thread protein contents and phylogenetic conservation among closely related species is required. Here, we conducted genomic, transcriptomic and proteomic analyses of C. darwini and its close relative Caerostris extrusa. A variety of spidroins and low-molecular-weight proteins were found in the dragline silk of these species; all of the genes encoding these proteins were conserved in both genomes, but their genes were more expressed in C. darwini. The potential to produce very tough silk is common in the genus Caerostris, and our results may suggest the existence of plasticity allowing silk mechanical properties to be changed by optimizing related gene expression in response to the environment.


Subject(s)
Fibroins/genetics , Fibroins/metabolism , Spiders/classification , Animals , Biomechanical Phenomena , Evolution, Molecular , Female , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Molecular Weight , Phylogeny , Proteomics , Spiders/genetics , Spiders/metabolism , Whole Genome Sequencing
7.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312234

ABSTRACT

Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach, combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily as well as several nonspidroin SpiCE proteins. Artificial synthesis and the combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.


Subject(s)
Silk/chemistry , Spiders/physiology , Animals , Fibroins/chemistry , Fibroins/genetics , Fibroins/metabolism , Genome , Spiders/genetics , Transcriptome
8.
Biomolecules ; 11(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921320

ABSTRACT

Spider silk is a natural fiber with remarkable strength, toughness, and elasticity that is attracting attention as a biomaterial of the future. Golden orb-weaving spiders (Trichonephila clavata) construct large, strong webs using golden threads. To characterize the pigment of golden T. clavata dragline silk, we used liquid chromatography and mass spectrometric analysis. We found that the major pigment in the golden dragline silk of T. clavata was xanthurenic acid. To investigate the possible function of the pigment, we tested the effect of xanthurenic acid on bacterial growth using gram-negative Escherichia coli and gram-positive Bacillus subtilis. We found that xanthurenic acid had a slight antibacterial effect. Furthermore, to investigate the UV tolerance of the T. clavata threads bleached of their golden color, we conducted tensile deformation tests and scanning electron microscope observations. However, in these experiments, no significant effect was observed. We therefore speculate that golden orb-weaving spiders use the pigment for other purposes, such as to attract their prey in the sunlight.


Subject(s)
Anti-Bacterial Agents/analysis , Pigments, Biological/analysis , Silk/chemistry , Spiders/metabolism , Xanthurenates/analysis , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/radiation effects , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Pigments, Biological/metabolism , Pigments, Biological/pharmacology , Pigments, Biological/radiation effects , Silk/metabolism , Ultraviolet Rays , Xanthurenates/metabolism , Xanthurenates/pharmacology , Xanthurenates/radiation effects
9.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: mdl-33148640

ABSTRACT

Spider silk fiber rapidly assembles from spidroin protein in soluble state via an incompletely understood mechanism. Here, we present an integrated model for silk formation that incorporates the effects of multiple chemical and physical gradients on the different spidroin functional domains. Central to the process is liquid-liquid phase separation (LLPS) that occurs in response to multivalent anions such as phosphate, mediated by the carboxyl-terminal and repetitive domains. Acidification coupled with LLPS triggers the swift self-assembly of nanofibril networks, facilitated by dimerization of the amino-terminal domain, and leads to a liquid-to-solid phase transition. Mechanical stress applied to the fibril structures yields macroscopic fibers with hierarchical organization and enriched for ß-sheet conformations. Studies using native silk gland material corroborate our findings on spidroin phase separation. Our results suggest an intriguing parallel between silk assembly and other LLPS-mediated mechanisms, such as found in intracellular membraneless organelles and protein aggregation disorders.

10.
Biomol NMR Assign ; 14(2): 335-338, 2020 10.
Article in English | MEDLINE | ID: mdl-32767002

ABSTRACT

Spider dragline silk is well recognized due to its excellent mechanical properties. Dragline silk protein mainly consists of two proteins, namely, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). The MaSp N-terminal domain (NTD) conformation displays a strong dependence on ion and pH gradients, which is crucial for the self-assembly behavior of spider silk. In the spider major ampullate gland, where the pH is neutral and concentration of NaCl is high, the NTD forms a monomer. In contrast, within the spinning duct, where pH becomes more acidic (to pH ~ 5) and the concentration of salt is low, NTD forms a dimer in antiparallel orientation. In this study, we report near-complete backbone and side chain chemical shift assignment of the monomeric form of NTD of MaSp2 from Nephila clavipes at pH 7 in the presence of 300 mM NaCl. Our NMR data demonstrate that secondary structure of monomeric form of NTD MaSp2 consists of five helix regions.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Fibroins/chemistry , Proton Magnetic Resonance Spectroscopy , Spiders/metabolism , Amino Acid Sequence , Animal Structures , Animals , Hydrogen-Ion Concentration , Nitrogen Isotopes , Protein Domains , Protein Structure, Secondary
11.
Commun Biol ; 3(1): 357, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641733

ABSTRACT

Photosynthetic microorganisms such as cyanobacteria, purple bacteria and microalgae have attracted great interest as promising platforms for economical and sustainable production of bioenergy, biochemicals, and biopolymers. Here, we demonstrate heterotrophic production of spider dragline silk proteins, major ampullate spidroins (MaSp), in a marine photosynthetic purple bacterium, Rhodovulum sulfidophilum, under both photoheterotrophic and photoautotrophic growth conditions. Spider silk is a biodegradable and biocompatible material with remarkable mechanical properties. R. sulfidophilum grow by utilizing abundant and renewable nonfood bioresources such as seawater, sunlight, and gaseous CO2 and N2, thus making this photosynthetic microbial cell factory a promising green and sustainable production platform for proteins and biopolymers, including spider silks.


Subject(s)
Bioreactors , Fibroins/biosynthesis , Rhodovulum/metabolism , Animals , Bioreactors/microbiology , Fibroins/genetics , Fibroins/isolation & purification , Fibroins/ultrastructure , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Microscopy, Electron, Scanning , Photosynthesis , Rhodovulum/genetics , Spiders
12.
Nature ; 569(7756): 438-442, 2019 05.
Article in English | MEDLINE | ID: mdl-31068697

ABSTRACT

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Subject(s)
Gold/chemistry , Proteins/chemistry , Cryoelectron Microscopy , Cysteine/chemistry , Mercury/chemistry , Models, Molecular , Proteins/ultrastructure
13.
Macromol Biosci ; 19(3): e1800220, 2019 03.
Article in English | MEDLINE | ID: mdl-30230228

ABSTRACT

Spider dragline silk is a composite biopolymer that harbors extraordinary mechanical characteristics, and consists of a hierarchically arranged protein core surrounded by outer "skin" layers. However, the contribution of the successive fiber layers on material properties has not been well defined. Here, the influence of the different components on the physicochemical and mechanical properties of dragline is investigated. The crystal structure and the mechanical properties are not changed significantly after the removal of skin constituents, indicating that the core region of dragline silk fibers determines the structural and mechanical properties. Furthermore, the outer layers have little influence on supercontraction, suggesting they do not function as protection against the penetration of water molecules. On the other hand, the outer layers offer some protection against protease digestion. The present study provides insight into how the function and structure of silk fibers are modulated and facilitates the design of silk-inspired functional materials.


Subject(s)
Silk/chemistry , Stress, Mechanical , Tensile Strength , Animals , Spiders
14.
Nat Commun ; 9(1): 2121, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844575

ABSTRACT

The ß-sheet is the key structure underlying the excellent mechanical properties of spider silk. However, the comprehensive mechanism underlying ß-sheet formation from soluble silk proteins during the transition into insoluble stable fibers has not been elucidated. Notably, the assembly of repetitive domains that dominate the length of the protein chains and structural features within the spun fibers has not been clarified. Here we determine the conformation and dynamics of the soluble precursor of the repetitive domain of spider silk using solution-state NMR, far-UV circular dichroism and vibrational circular dichroism. The soluble repetitive domain contains two major populations: ~65% random coil and ~24% polyproline type II helix (PPII helix). The PPII helix conformation in the glycine-rich region is proposed as a soluble prefibrillar region that subsequently undergoes intramolecular interactions. These findings unravel the mechanism underlying the initial step of ß-sheet formation, which is an extremely rapid process during spider silk assembly.


Subject(s)
Protein Conformation, beta-Strand/physiology , Silk/chemistry , Spiders/metabolism , Animals , Circular Dichroism , Magnetic Resonance Spectroscopy , Stress, Mechanical , Tensile Strength/physiology
15.
Biomacromolecules ; 19(6): 2227-2237, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29694780

ABSTRACT

An artificial spinning system using regenerated silk fibroin solutions is adopted to produce high-performance silk fibers. In previous studies, alcohol-based agents, such as methanol or ethanol, were used to coagulate silk dope solutions, producing silk fiber with poor mechanical properties compared with those of native silk fibers. The alcohol-based coagulation agents induce rapid ß-sheet crystallization of the silk molecules, which inhibits subsequent alignment of the ß-sheet crystals. Here, we induce gradual ß-sheet formation to afford adequate ß-sheet alignment similar to that of native silk fiber. To this aim, we developed an amorphous silk fiber spinning process that prevents fast ß-sheet formation in silk molecules by using tetrahydrofuran (THF) as a coagulation solvent. In addition, we apply postdrawing to the predominantly amorphous silk fibers to induce ß-sheet formation and orientation. The resultant silk fibers showed a 2.5-fold higher extensibility, resulting in 1.5-fold tougher silk fibers compared with native Bombyx mori silk fiber. The amorphous silk fiber spinning process developed here will pave the way to the production of silk fibers with desired mechanical properties.


Subject(s)
Ethanol/chemistry , Furans/chemistry , Silk/chemistry , Animals , Bombyx , Crystallization , Protein Structure, Secondary
16.
PLoS One ; 12(8): e0183397, 2017.
Article in English | MEDLINE | ID: mdl-28832627

ABSTRACT

The extraordinary mechanical properties of spider dragline silk are dependent on the highly repetitive sequences of the component proteins, major ampullate spidroin 1 and 2 (MaSp2 and MaSp2). MaSp sequences are dominated by repetitive modules composed of short amino acid motifs; however, the patterns of motif conservation through evolution and their relevance to silk characteristics are not well understood. We performed a systematic analysis of MaSp sequences encompassing infraorder Araneomorphae based on the conservation of explicitly defined motifs, with the aim of elucidating the essential elements of MaSp1 and MaSp2. The results show that the GGY motif is nearly ubiquitous in the two types of MaSp, while MaSp2 is invariably associated with GP and di-glutamine (QQ) motifs. Further analysis revealed an extended MaSp2 consensus sequence in family Araneidae, with implications for the classification of the archetypal spidroins ADF3 and ADF4. Additionally, the analysis of RNA-seq data showed the expression of a set of distinct MaSp-like variants in genus Tetragnatha. Finally, an apparent association was uncovered between web architecture and the abundance of GP, QQ, and GGY motifs in MaSp2, which suggests a co-expansion of these motifs in response to the evolution of spiders' prey capture strategy.


Subject(s)
Amino Acid Motifs , Fibroins/chemistry , Silk/chemistry , Amino Acid Sequence , Animals , Conserved Sequence , Spiders
17.
Biomacromolecules ; 18(4): 1350-1355, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28252955

ABSTRACT

The spider silk spinning process converts spidroins from an aqueous form to a tough fiber. This spinning process has been investigated by numerous researchers, and micelles or liquid crystals of spidroins have been reported to form silk fibers, which are bundles of silk microfibrils. However, the formation process of silk microfibrils has not been clarified previously. Here, we report that silk microfibrils are generated through the formation, homogenization, and linkage of liquid crystalline granules without micelle-like structures. Heterogeneous granules on the submicron to micron scale were observed in the storage sac, whereas homogeneous granules with diameters of approximately 100 nm were aligned along the tapering duct. In the spun fibers, the homogeneous granules were connected along the fiber axis. This is the first clear description of the formation of granule-based microfibrils in the spinning process, which is the key conversion process leading to the unique hierarchical structure of spider dragline.


Subject(s)
Fibroins/chemistry , Liquid Crystals/chemistry , Microfibrils/chemistry , Spiders , Animals , Female , Fibroins/ultrastructure , Liquid Crystals/ultrastructure , Microfibrils/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spiders/anatomy & histology
18.
Sci Rep ; 6: 27573, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279149

ABSTRACT

Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.


Subject(s)
Bombyx/chemistry , Fibroins/chemistry , Materials Testing , Amino Acid Motifs , Animals , Birefringence , Calorimetry, Differential Scanning , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Peptides/chemistry , Stress, Mechanical , Temperature , Tensile Strength , Thermogravimetry , X-Rays
19.
Nano Lett ; 15(2): 1331-5, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25559993

ABSTRACT

A cysteine-substituted mutant of the ring-shaped protein TRAP (trp-RNA binding attenuation protein) can be induced to self-assemble into large, monodisperse hollow spherical cages in the presence of 1.4 nm diameter gold nanoparticles. In this study we use high-speed atomic force microscopy (HS-AFM) to probe the dynamics of the structural changes related to TRAP interactions with the gold nanoparticle as well as the disassembly of the cage structure. The dynamic aggregation of TRAP protein in the presence of gold nanoparticles was observed, including oligomeric rearrangements, consistent with a role for gold in mediating intermolecular disulfide bond formation. We were also able to observe that the TRAP-cage is composed of multiple, closely packed TRAP rings in an apparently regular arrangement. A potential role for inter-ring disulfide bonds in forming the TRAP-cage was shown by the fact that ring-ring interactions were reversed upon the addition of reducing agent dithiothreitol. A dramatic disassembly of TRAP-cages was observed using HS-AFM after the addition of dithiothreitol. To the best of our knowledge, this is the first report to show direct high-resolution imaging of the disassembly process of a large protein complex in real time.


Subject(s)
Microscopy, Atomic Force/methods , Molecular Probes , Proteins/chemistry
20.
PLoS One ; 9(8): e102454, 2014.
Article in English | MEDLINE | ID: mdl-25083707

ABSTRACT

Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redß recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination.


Subject(s)
Bacteriophages/genetics , Bacteriophages/metabolism , Multigene Family , Recombinases/genetics , Recombinases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Amino Acid Sequence , DNA, Single-Stranded/metabolism , DNA-Binding Proteins , Gene Order , Genome, Viral , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinases/chemistry , Sequence Alignment , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL