Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
ACR Open Rheumatol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143499

ABSTRACT

OBJECTIVE: There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to SLE phenotypes, specifically production of type I IFNs and generation of autoantibodies. METHODS: We profiled cell-sorted RNA-sequencing data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and natural killer cells) from peripheral blood mononuclear cells of 120 patients with SLE and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes, including autoantibody production and disease activity. RESULTS: We found 731 differentially expressed (DE) TEs across all SLE phenotypes that were mostly cell specific and phenotype specific. DE TEs were enriched for specific families and open reading frames of viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity, such as LY6E, ISG15, and TRIM22, and pathways such as IFN signaling. CONCLUSION: These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.

2.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38076936

ABSTRACT

There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to production of type I IFNs and generation of autoantibodies. We profiled cell-sorted RNA-seq data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and NK cells) from PBMCs of 120 SLE patients and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes including autoantibody production and disease activity and discovered 731 differentially expressed (DE) TEs whose effects were mostly cell-specific and phenotype-specific. DE TEs were enriched for specific families and viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity such as LY6E, ISG15, TRIM22 and pathways such as interferon signaling. These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.

3.
PLoS One ; 18(2): e0281371, 2023.
Article in English | MEDLINE | ID: mdl-36787323

ABSTRACT

OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.


Subject(s)
Aortic Aneurysm, Abdominal , Exosomes , MicroRNAs , Humans , Exosomes/metabolism , MicroRNAs/metabolism , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Biomarkers , Real-Time Polymerase Chain Reaction
4.
Science ; 376(6589): eabf1970, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389781

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell type-specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type-specific cis-expression quantitative trait loci and to link SLE-associated variants to cell type-specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic/genetics , RNA-Seq , Transcription, Genetic
5.
Sci Adv ; 7(38): eabi4360, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34524848

ABSTRACT

Current pooled CRISPR screens for cis-regulatory elements (CREs), based on transcriptional output changes, are typically limited to characterizing CREs of only one gene. Here, we describe CRISPRpath, a scalable screening strategy for parallelly characterizing CREs of genes linked to the same biological pathway and converging phenotypes. We demonstrate the ability of CRISPRpath for simultaneously identifying functional enhancers of six genes in the 6-thioguanine­induced DNA mismatch repair pathway using both CRISPR interference (CRISPRi) and CRISPR nuclease (CRISPRn) approaches. Sixty percent of the identified enhancers are known promoters with distinct epigenomic features compared to other active promoters, including increased chromatin accessibility and interactivity. Furthermore, by imposing different levels of selection pressure, CRISPRpath can distinguish enhancers exerting strong impact on gene expression from those exerting weak impact. Our results offer a nuanced view of cis-regulation and demonstrate that CRISPRpath can be leveraged for understanding the complex gene regulatory program beyond transcriptional output at scale.

6.
Commun Biol ; 4(1): 488, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33883687

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease in which outcomes vary among different racial groups. We leverage cell-sorted RNA-seq data (CD14+ monocytes, B cells, CD4+ T cells, and NK cells) from 120 SLE patients (63 Asian and 57 White individuals) and apply a four-tier approach including unsupervised clustering, differential expression analyses, gene co-expression analyses, and machine learning to identify SLE subgroups within this multiethnic cohort. K-means clustering on each cell-type resulted in three clusters for CD4 and CD14, and two for B and NK cells. To understand the identified clusters, correlation analysis revealed significant positive associations between the clusters and clinical parameters including disease activity as well as ethnicity. We then explored differentially expressed genes between Asian and White groups for each cell-type. The shared differentially expressed genes across cells were involved in SLE or other autoimmune-related pathways. Co-expression analysis identified similarly regulated genes across samples and grouped these genes into modules. Finally, random forest classification of disease activity in the White and Asian cohorts showed the best classification in CD4+ T cells in White individuals. The results from these analyses will help stratify patients based on their gene expression signatures to enable SLE precision medicine.


Subject(s)
Lupus Erythematosus, Systemic/ethnology , Transcriptome/immunology , Asian/genetics , B-Lymphocytes/immunology , California , Cohort Studies , Ethnicity/genetics , Female , Gene Expression Profiling , Humans , Killer Cells, Natural/immunology , Lupus Erythematosus, Systemic/genetics , Male , Monocytes/immunology , T-Lymphocytes/immunology , White People/genetics
8.
Nature ; 587(7835): 644-649, 2020 11.
Article in English | MEDLINE | ID: mdl-33057195

ABSTRACT

Lineage-specific epigenomic changes during human corticogenesis have been difficult to study owing to challenges with sample availability and tissue heterogeneity. For example, previous studies using single-cell RNA sequencing identified at least 9 major cell types and up to 26 distinct subtypes in the dorsal cortex alone1,2. Here we characterize cell-type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational samples of the human cortex. We show that chromatin interactions underlie several aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell-type-specific manner. In addition, promoters with increased levels of chromatin interactivity-termed super-interactive promoters-are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a technique that integrates immunostaining, CRISPR interference, RNAscope, and image analysis to validate cell-type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our findings provide insights into cell-type-specific gene expression patterns in the developing human cortex and advance our understanding of gene regulation and lineage specification during this crucial developmental window.


Subject(s)
Cells/classification , Cells/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Epigenome , Epigenomics , Organogenesis/genetics , CRISPR-Cas Systems , Cell Lineage/genetics , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements , Histones/chemistry , Histones/metabolism , Humans , Imaging, Three-Dimensional , Methylation , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional , Reproducibility of Results , Transcription, Genetic
9.
PLoS One ; 15(4): e0228760, 2020.
Article in English | MEDLINE | ID: mdl-32348304

ABSTRACT

Accurate RNA quantification at the single-cell level is critical for understanding the dynamics of gene expression and regulation across space and time. Single molecule FISH (smFISH), such as RNAscope, provides spatial and quantitative measurements of individual transcripts, therefore, can be used to explore differential gene expression among a heterogeneous cell population if combined with cell identify information. However, such analysis is not straightforward, and existing image analysis pipelines cannot integrate both RNA transcripts and cellular staining information to automatically output cell type-specific gene expression. We developed an efficient and customizable analysis method, Single-Molecule Automatic RNA Transcription Quantification (SMART-Q), to enable the analysis of gene transcripts in a cell type-specific manner. SMART-Q efficiently infers cell identity information from multiplexed immuno-staining and quantifies cell type-specific transcripts using a 3D Gaussian fitting algorithm. Furthermore, we have optimized SMART-Q for user experiences, such as flexible parameters specification, batch data outputs, and visualization of analysis results. SMART-Q meets the demands for efficient quantification of single-molecule RNA and can be widely used for cell type-specific RNA transcript analysis.


Subject(s)
RNA/genetics , Software , Transcription, Genetic , Cell Nucleus/metabolism , Humans , Image Processing, Computer-Assisted , Quality Control , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Nat Genet ; 51(8): 1252-1262, 2019 08.
Article in English | MEDLINE | ID: mdl-31367015

ABSTRACT

Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform an integrative analysis of chromatin interactions, open chromatin regions and transcriptomes using promoter capture Hi-C, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing, respectively, in four functionally distinct neural cell types: induced pluripotent stem cell (iPSC)-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus-like neurons and primary astrocytes. We identify hundreds of thousands of long-range cis-interactions between promoters and distal promoter-interacting regions, enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several promoter-interacting regions by using clustered regularly interspaced short palindromic repeats (CRISPR) techniques in human excitatory neurons, demonstrating that CDK5RAP3, STRAP and DRD2 are transcriptionally regulated by physically linked enhancers.


Subject(s)
Cell Lineage/genetics , Chromatin/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Genetic Markers , Mental Disorders/genetics , Neurons/metabolism , Promoter Regions, Genetic , Chromosome Mapping , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Genome, Human , Genome-Wide Association Study , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Infant , Male , Neurons/cytology , Polymorphism, Single Nucleotide
11.
Elife ; 82019 05 24.
Article in English | MEDLINE | ID: mdl-31124784

ABSTRACT

Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.


Subject(s)
Embryonic Stem Cells/physiology , Enhancer Elements, Genetic , Gene Expression Regulation , SOXB1 Transcription Factors/biosynthesis , Transcription, Genetic , Animals , Mice , SOXB1 Transcription Factors/genetics
12.
Science ; 363(6424)2019 01 18.
Article in English | MEDLINE | ID: mdl-30545847

ABSTRACT

A wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in Sim1 and Mc4r heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the Sim1 promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in Sim1 heterozygous mice. To evaluate the therapeutic potential of CRISPRa, we injected CRISPRa-recombinant adeno-associated virus into the hypothalamus, which led to reversal of the obesity phenotype in Sim1 and Mc4r haploinsufficient mice. Our results suggest that endogenous gene up-regulation could be a potential strategy to treat altered gene dosage diseases.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Enhancer Elements, Genetic , Haploinsufficiency , Obesity/genetics , Promoter Regions, Genetic , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line , Dependovirus , Disease Models, Animal , Female , Gene Expression Regulation , Gene Transfer Techniques , Heterozygote , Hypothalamus , Loss of Function Mutation , Male , Mice , Mice, Transgenic , Obesity/therapy , Phenotype , Receptor, Melanocortin, Type 4/genetics , Repressor Proteins/genetics , Up-Regulation , Weight Gain
13.
Nat Biotechnol ; 36(1): 89-94, 2018 01.
Article in English | MEDLINE | ID: mdl-29227470

ABSTRACT

Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-ß and perform eQTL analysis on 23 pooled samples.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Lupus Erythematosus, Systemic/drug therapy , Single-Cell Analysis/methods , Transcriptome/genetics , Genotype , Humans , Interferons/therapeutic use , Lupus Erythematosus, Systemic/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
14.
Elife ; 62017 06 17.
Article in English | MEDLINE | ID: mdl-28623666

ABSTRACT

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ.


Subject(s)
Acinar Cells/physiology , Cell Differentiation , Organogenesis , SOXB1 Transcription Factors/metabolism , Salivary Glands/cytology , Salivary Glands/embryology , Animals , Gene Knockout Techniques , Humans , Mice
15.
Genome Res ; 26(3): 397-405, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26813977

ABSTRACT

With <2% of the human genome coding for proteins, a major challenge is to interpret the function of the noncoding DNA. Millions of regulatory sequences have been predicted in the human genome through analysis of DNA methylation, chromatin modification, hypersensitivity to nucleases, and transcription factor binding, but few have been shown to regulate transcription in their native contexts. We have developed a high-throughput CRISPR/Cas9-based genome-editing strategy and used it to interrogate 174 candidate regulatory sequences within the 1-Mbp POU5F1 locus in human embryonic stem cells (hESCs). We identified two classical regulatory elements, including a promoter and a proximal enhancer, that are essential for POU5F1 transcription in hESCs. Unexpectedly, we also discovered a new class of enhancers that contribute to POU5F1 transcription in an unusual way: Disruption of such sequences led to a temporary loss of POU5F1 transcription that is fully restored after a few rounds of cell division. These results demonstrate the utility of high-throughput screening for functional characterization of noncoding DNA and reveal a previously unrecognized layer of gene regulation in human cells.


Subject(s)
CRISPR-Cas Systems , Gene Targeting , Genetic Testing , Phenotype , Cell Line , Enhancer Elements, Genetic , Gene Expression Regulation , Gene Targeting/methods , Genetic Testing/methods , Genome, Human , High-Throughput Screening Assays , Humans , Octamer Transcription Factor-3/genetics , Regulatory Sequences, Nucleic Acid , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL