Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 42(11): 2046-55, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20351596

ABSTRACT

PURPOSE: To determine the effects of training with low muscle glycogen on exercise performance, substrate metabolism, and skeletal muscle adaptation. METHODS: Fourteen well-trained cyclists were pair-matched and randomly assigned to HIGH- or LOW-glycogen training groups. Subjects performed nine aerobic training (AT; 90 min at 70% VO2max) and nine high-intensity interval training sessions (HIT; 8 × 5-min efforts, 1-min recovery) during a 3-wk period. HIGH trained once daily, alternating between AT on day 1 and HIT the following day, whereas LOW trained twice every second day, first performing AT and then, 1 h later, performing HIT. Pretraining and posttraining measures were a resting muscle biopsy, metabolic measures during steady-state cycling, and a time trial. RESULTS: Power output during HIT was 297 ± 8 W in LOW compared with 323 ± 9 W in HIGH (P < 0.05); however, time trial performance improved by ∼10% in both groups (P < 0.05). Fat oxidation during steady-state cycling increased after training in LOW (from 26 ± 2 to 34 ± 2 µmol·kg−¹·min−¹, P < 0.01). Plasma free fatty acid oxidation was similar before and after training in both groups, but muscle-derived triacylglycerol oxidation increased after training in LOW (from 16 ± 1 to 23 ± 1 µmol·kg−¹·min−¹, P < 0.05). Training with low muscle glycogen also increased ß-hydroxyacyl-CoA-dehydrogenase protein content (P < 0.01). CONCLUSIONS: Training with low muscle glycogen reduced training intensity and, in performance, was no more effective than training with high muscle glycogen. However, fat oxidation was increased after training with low muscle glycogen, which may have been due to the enhanced metabolic adaptations in skeletal muscle.


Subject(s)
Bicycling/physiology , Glycogen/deficiency , Lipid Metabolism/physiology , Muscle, Skeletal/physiology , Physical Exertion/physiology , Adult , Energy Metabolism/physiology , Humans , Male , Proteins/analysis , Young Adult
2.
Med Sci Sports Exerc ; 36(9): 1543-50, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15354036

ABSTRACT

PURPOSE AND METHODS: To investigate the effect of glucose infusion on glucose kinetics and performance, six endurance cyclists (VO2max = 61.7 +/- 2.0 (mean +/- SE) mL x kg(-1) x min(-1)) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (991 +/- 41 kJ). Subjects were infused with either glucose (20% in saline; carbohydrate (CHO)) at a rate of 1 g x min(-1) or saline (0.9% saline; placebo (PLA)). It was hypothesized that time trial performance would be unaffected by the infusion of glucose, as endogenous stores of CHO would not be limiting in the PLA trial. RESULTS: Plasma glucose concentration increased from 4.8 +/- 0.1 mmol x L(-1) to 5.9 +/- 0.3 mmol x L(-1) during the PLA trial and from 4.9 +/- 0.1 mmol x L(-1) at rest to 12.4 +/- 1.1 mmol x L(-1) during the CHO trial. These values were significantly higher at all time points during the CHO trial compared with PLA (P < 0.001). In the final stages of the time trial, Rd in the PLA trial was 49 +/- 5 micromol x kg(-1) x min(-1) compared with 88 +/- 7 micromol x kg(-1) x min(-1) in the CHO trial (P < 0.05). Despite these differences, there was no difference in performance time between PLA and CHO (60.04 +/- 1.47 min, PLA, vs 59.90 +/- 1.49 min, CHO, respectively). Infused carbohydrate oxidation in the last 25% of the CHO trial was at least 675 +/- 120 micromol x kg(-1) and contributed 17 +/- 4% to total carbohydrate oxidation. CONCLUSION: The results demonstrate that glucose infusion had no effect on 1-h cycle time-trial performance, despite an increased availability of plasma glucose for oxidation and evidence of increased glucose uptake into the tissues.


Subject(s)
Bicycling , Blood Glucose/metabolism , Glucose/administration & dosage , Adult , Blood Gas Analysis , Dietary Carbohydrates/administration & dosage , Heart Rate , Humans , Male , Oxidation-Reduction , Task Performance and Analysis , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...