Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(2): 1573-1581, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38157489

ABSTRACT

Fostered by the top power conversion efficiencies (PCEs) of lab-scale devices, industrialization of perovskite solar cells is underway. Nevertheless, the intrinsically poor stability of these materials still represents a major concern. Herein, inspired by Nature, the use of ß-carotene in perovskite solar cells is proposed to mimic its role as a protective pigment, as occurs in natural photosynthesis. Laser-mediated photostability (LMPS) assessment, Fourier-transform infrared spectra analysis acquired in attenuate total reflectance (ATR-FTIR), spectroscopy ellipsometry (SE), and time-resolved photoluminescence (TRPL) measurements under stress conditions prove that the inclusion of a thin ß-carotene interlayer promotes a high improvement in the photostability of the perovskite films against photooxidation. Importantly, this is accompanied by an improvement of the solar cell PCE that approaches 20% efficiency with no hysteresis, which is among the highest values reported for a mixed halide (I-Br) perovskite with a band gap of 1.74 eV, relevant for coupling with silicon in tandem cells.

SELECTION OF CITATIONS
SEARCH DETAIL