Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
1.
CNS Neurosci Ther ; 30(10): e70058, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39370848

ABSTRACT

OBJECTIVE: Levodopa-induced dyskinesia (DYS) adversely affects the quality of life of Parkinson's disease (PD) patients. However, few studies have focused on the relationship between DYS and sleep and electroencephalography (EEG). Our study aimed to establish the objective physiological indicators assessed by polysomnography (PSG) that are associated with DYS in PD patients. METHODS: We enrolled 122 patients with PD, divided into two groups: PD with DYS (n = 27) and PD without DYS group (non-DYS, n = 95). The demographics and clinical characteristics and sleep assessment in the two groups were collected. More importantly, overnight six-channel PSG parameters were compared in the two groups. We also compared different bands and brain regions of average power spectral density within each group. RESULTS: Compared with the non-DYS group, the DYS group tended to have a significantly higher percentage of nonrapid eye movement sleep (NREM). Gender, levodopa equivalent daily dose (LEDD), rapid eye movement (REM) sleep (min), and the NREM percentage were positively correlated with the occurrence of DYS. After adjusting for gender, disease duration, LEDD, taking amantadine or not, and Montreal Cognitive Assessment (MoCA), NREM%, N3%, and REM (min), the percentage of NREM sleep (p = 0.035), female (p = 0.002), and LEDD (p = 0.005), and REM sleep time (min) (p = 0.012) were still associated with DYS. There was no significant difference in whole-night different bands of average power spectral density between two groups. There was no significant difference in normalized average power spectral density of slow wave activity (SWA) (0.5-2 Hz, 0.5-4 Hz, and 2-4 Hz) of early and late NREM sleep in the DYS group. Dynamic normalized average power spectral density of SWA of low-frequency (0.5-2 Hz) reduction in the frontal region (p = 0.013) was associated with DYS in logistic regression after adjusting for confounding factors. CONCLUSION: PD patients with DYS have substantial sleep structure variations. Higher NREM percentage and less REM percentage were observed in PD patients with DYS. Dynamic normalized average power spectral density of low-frequency (0.5-2 Hz) SWA reduction in the frontal area could be a new electrophysiological marker of DYS in PD.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Electroencephalography , Levodopa , Parkinson Disease , Polysomnography , Humans , Female , Male , Parkinson Disease/physiopathology , Parkinson Disease/complications , Parkinson Disease/drug therapy , Aged , Middle Aged , Polysomnography/methods , Levodopa/adverse effects , Levodopa/therapeutic use , Electroencephalography/methods , Dyskinesia, Drug-Induced/physiopathology , Dyskinesia, Drug-Induced/diagnosis , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Sleep Stages/physiology , Frontal Lobe/physiopathology , Sleep, Slow-Wave/physiology
2.
Nat Sci Sleep ; 16: 1355-1364, 2024.
Article in English | MEDLINE | ID: mdl-39282469

ABSTRACT

Background: Sleep is critical in health problems including Parkinson's disease (PD). This study examined the association between sleep characteristics and the likelihood of prodromal PD. Methods: At baseline examination of the Heart and Brain Investigation in Taicang (HABIT) study, potential PD biomarkers were obtained for 8777 participants aged over 50 years, and the probability of prodromal PD was assessed based on the Chinese expert consensus and Movement Disorder Society (MDS) criteria. General and component sleep characteristics were evaluated by the Pittsburgh Sleep Quality Index (PSQI). Median regression was applied to examine the association between sleep and the probability of prodromal PD, adjusting for age, sex, education level, physical activity, obesity, fast plasma glucose, lipids, and hypertension. Results: Based on China criteria, a higher level of PSQI score was significantly associated with a higher probability of prodromal PD (ß = 0.02, 95% CI: 0.01-0.03) and a higher risk of having an increased probability of prodromal PD (OR = 1.04, 95% CI: 1.02-1.05). Compared to participants with good quality sleep, those with poor quality sleep had a 0.07% increased probability of prodromal PD (95% CI: 0.01-0.13) and a 19% increased risk of having a high prodromal PD probability (95% CI: 1.04-1.20). Similar associations between sleep quality and the probability of prodromal PD were also observed using the MDS criteria. Subjective sleep quality, sleep latency, habitual sleep efficiency, daytime dysfunction, and use of sleep medications were also associated with the probability of prodromal PD. Conclusion: Poor sleep quality was associated with a high probability of prodromal PD. Sleep may be helpful for understanding and intervention of prodromal PD.

3.
Angew Chem Int Ed Engl ; : e202412279, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056300

ABSTRACT

Diversifying the connecting junctions will be feasible for the controllable collaboration of metal organic frameworks (MOFs) and covalent organic frameworks (COFs) to rationally design multifunction-integrated heterostructures with enhanced performance, yet it is in the nascent stage. Herein, by intelligently exploiting the polymerization of vinyl group, C-C bond is innovatively introduced to construct the core-shell MOF@COF heterostructures with adjustable shell thickness and rare interpenetrated structure. The unique structure endows prepared C-C-linked MIL-68@COF-Vs with more superior visible-light harvesting and photogenerated carrier separation capability, leading to significantly higher photocatalytic activity and faster degradation rate than pristine MIL-68-C=Cs, COF-V, and imine-linked MIL-68-NH2@COF-V. Further, the customized MIL-68@COF-V is in-situ grown as reusable films with significantly boosted performance under ambient condition, which realize the highly efficient degradation of tetracycline within 15 min (96.5%), rhodamine 6G within 25 min (97.6%), and phenol within 40 min (95.3%) by solar drive. This work exhibits the distinctive advantages of C-C junction in the MOF@COF construction, and highlights the application prospect of rational-designed heterostructure in the treatment of persistent organic pollutants.

4.
Front Aging Neurosci ; 16: 1403077, 2024.
Article in English | MEDLINE | ID: mdl-38903900

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods: Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results: Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion: These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.

5.
NPJ Parkinsons Dis ; 10(1): 70, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548756

ABSTRACT

This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.

6.
Sleep Med ; 115: 155-161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367357

ABSTRACT

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Sleep, Slow-Wave , Humans , Parkinson Disease/complications , Sleep, REM , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/complications , Cross-Sectional Studies , Polysomnography , Muscle Hypotonia , Caffeine , Disease Progression
7.
Aging (Albany NY) ; 16(2): 1555-1580, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38240717

ABSTRACT

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.


Subject(s)
Parkinson Disease , Transcriptome , Humans , Genome-Wide Association Study , Proteome/genetics , Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Membrane Glycoproteins/genetics
8.
Parkinsonism Relat Disord ; 120: 106001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217954

ABSTRACT

AIMS: Parkinson's disease (PD), as the second most common neurodegenerative disorder, often presents diagnostic challenges in differentiation from other forms of Parkinsonism. Recent studies have reported an association between plasma glycoprotein nonmetastatic melanoma protein B (pGPNMB) and PD. METHODS: A retrospective study was conducted, comprising 401 PD patients, 111 multiple system atrophy (MSA) patients, 13 progressive supranuclear palsy (PSP) patients and 461 healthy controls from the Chinese Han population, with an assessment of pGPNMB levels. RESULTS: The study revealed that pGPNMB concentrations were significantly lower in PD and MSA patients compared to controls (area under the receiver operating characteristics curve (AUC) 0.62 and 0.74, respectively, P < 0.0001 for both), but no difference was found in PSP patients compared to controls (P > 0.05). Interestingly, the level of pGPNMB was significantly higher in PD patients than in MSA patients (AUC = 0.63, P < 0.0001). Furthermore, the study explored the association between pGPNMB levels and disease severity in PD and MSA patients, revealing a positive correlation in PD patients but not in MSA patients with both disease severity and cognitive impairment. CONCLUSION: This study successfully replicated prior findings, demonstrating an association between pGPNMB levels and disease severity, and also identified a correlation with cognitive impairment in PD patients of the Chinese Han population. Additionally, this study is the first to identify a significant difference in pGPNMB levels between MSA, PD, and normal controls. The data provide new evidence supporting the potential role of pGPNMB in the diagnosis and differential diagnosis of Parkinsonism.


Subject(s)
Cognitive Dysfunction , Multiple System Atrophy , Parkinson Disease , Supranuclear Palsy, Progressive , Humans , Parkinson Disease/diagnosis , Retrospective Studies , Multiple System Atrophy/diagnosis , Supranuclear Palsy, Progressive/diagnosis , Cognitive Dysfunction/diagnosis , Diagnosis, Differential , Membrane Glycoproteins
9.
J Colloid Interface Sci ; 659: 974-983, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219315

ABSTRACT

Yolk-shell-structured transition metal sulfides (TMSs)/carbon nanocomposites are highly desirable in advanced energy storage system, such as sodium-ion batteries (SIBs) and supercapacitors (SCs). Nevertheless, practical applications are still prevented by the loose attachment of TMSs with carbon caused by conversion stress, the aggregation of TMSs nanoparticles and the sluggish ion transport caused by high crystallinity of carbon. Here, the disperse hollow Co9S8 nanoparticles encapsulated into N,S-codoped carbon nanotubes (CNTs) with poor crystallinity through CoNC bond was synthesized (CS-NSCNT) to overcome the above obstacles. The designed CS-NSCNT can provide the short diffusion path and prevent the huge volume expansion of conversion reaction. Moreover, the established CoNC bond endows the strong interaction and regulates the electronic structure thus promote the stability and rate performance effectively. The CS-NSCNT SCs's electrode delivers a high specific capacitance of 1150 F g-1 at 1 A g-1, with a high cycling life stability and rate performance. For SIBs, the CS-NSCNT cathode demonstrates an initial reversible capacity of 475 mAh g-1 at 0.1 A g-1 and an excellent rate performance with a capacity retention of 53 % at 10 A g-1. This work may satisfy the long-stability, high-capacitance/capacity, high-power/energy density application requirements of future applications.

10.
Small ; 20(26): e2311343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236167

ABSTRACT

Although lithium-sulfur (Li-S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li-S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge-discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g-1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g-1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li-S batteries.

11.
Sleep ; 47(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37638817

ABSTRACT

STUDY OBJECTIVES: Mounting evidence indicated the correlation between sleep and cerebral small vessel disease (CSVD). However, little is known about the exact causality between poor sleep and white matter injury, a typical signature of CSVD, as well as the underlying mechanisms. METHODS: Spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats were subjected to sleep fragmentation (SF) for 16 weeks. The effects of chronic sleep disruption on the deep white matter and cognitive performance were observed. RESULTS: SHR were validated as a rat model for CSVD. Fragmented sleep induced strain-dependent white matter abnormalities, characterized by reduced myelin integrity, impaired oligodendrocytes precursor cells (OPC) maturation and pro-inflammatory microglial polarization. Partially reversible phenotypes of OPC and microglia were observed in parallel following sleep recovery. CONCLUSIONS: Long-term SF-induced pathological effects on the deep white matter in a rat model of CSVD. The pro-inflammatory microglial activation and the block of OPC maturation may be involved in the mechanisms linking sleep to white matter injury.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Rats , Animals , Sleep Deprivation , Rats, Inbred SHR , Sleep , Rats, Inbred WKY , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology
12.
Behav Brain Res ; 459: 114787, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38042302

ABSTRACT

Pain is a widespread non-motor symptom that presents significant treatment challenges in patients with Parkinson's disease (PD). Safinamide, a new drug recently introduced for PD treatment, has demonstrated analgesic effects on pain in PD patients, though the underlying mechanisms remain unclear. To investigate the analgesic and anti-PD effect of safinamide, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used, and rasagiline as positive control on motor symptoms. Notably, only safinamide alleviated hyperalgesia in MPTP mice. Whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons revealed hyperexcitability in MPTP mice, which safinamide counteracted in a concentration-dependent manner. The voltage clamp further demonstrated that sodium current in DRG neurons of MPTP mice was enhanced and safinamide reduced sodium current density. RT-qPCR identified upregulated Nav1.7 and Nav1.8 transcripts (Scn9a and Scn10a) in DRG neurons of MPTP mice. Our results suggest that safinamide could relieve hyperalgesia by inhibiting DRG neuron hyperexcitability in MPTP mice.


Subject(s)
Hyperalgesia , Parkinson Disease , Humans , Mice , Animals , Hyperalgesia/drug therapy , Ganglia, Spinal , Parkinson Disease/complications , Parkinson Disease/drug therapy , Neurons/physiology , Pain , Analgesics/pharmacology , Sodium/pharmacology
13.
Cell Rep ; 43(1): 113591, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38153838

ABSTRACT

While fecal microbiota transplantation (FMT) shows promise in treating human diseases, oral capsule FMT is more accepted and accessible to patients. However, microbe selection in the upper gastrointestinal tract (UGIT) through oral administration remains unclear. Here, we demonstrate that short-term oral fecal gavage (OFG) alleviates acetaminophen-induced acute liver injury (AILI) in mice, regardless of the divergent effects of commensal gut microbes. Pasteurized fecal gavage yields similar therapeutic effects. OFG enriches gut Lachnospiraceae and butyrate compared to donor feces. Butyrate mitigates AILI-induced ferroptosis via AMPK-ULK1-p62 signaling to simultaneously induce mitophagy and Nrf2 antioxidant responses. Combined N-acetylcysteine and butyrate administration significantly improves AILI mouse survival rates. These observations indicate the significance of the UGIT in modulating the implanted fecal microbes through oral administration and its potential biological and clinical impacts. Our findings also highlight a possible strategy for applying microbial metabolites to treat acute liver injury.


Subject(s)
Butyrates , Fecal Microbiota Transplantation , Humans , Animals , Mice , Feces , Liver
14.
Front Microbiol ; 14: 1290015, 2023.
Article in English | MEDLINE | ID: mdl-38029106

ABSTRACT

Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that affects individuals of all age groups. Recently, the association between RA and the gut microbiome has led to the investigation of postbiotics as potential therapeutic strategies. Postbiotics refer to inactivated microbial cells, cellular components, or their metabolites that are specifically intended for the microbiota. Postbiotics not only profoundly influence the occurrence and development of RA, but they also mediate various inflammatory pathways, immune processes, and bone metabolism. Although they offer a variety of mechanisms and may even be superior to more conventional "biotics" such as probiotics and prebiotics, research on their efficacy and clinical significance in RA with disruptions to the intestinal microbiota remains limited. In this review, we provide an overview of the concept of postbiotics and summarize the current knowledge regarding postbiotics and their potential use in RA therapy. Postbiotics show potential as a viable adjunctive therapy option for RA.

15.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37990409

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Phenotype , Brain/diagnostic imaging , Polymorphism, Single Nucleotide/genetics , Genetic Loci
16.
Ultrasound Med Biol ; 49(11): 2422-2427, 2023 11.
Article in English | MEDLINE | ID: mdl-37666708

ABSTRACT

OBJECTIVE: The correlation between substantia nigra (SN) hyperechogenicity on transcranial sonography (TCS) and serum iron metabolism parameters in patients with the postural instability gait difficulty (PIGD) subtype of Parkinson's disease (PD) was investigated so as to explore the pathological mechanism of SN hyperechogenicity. METHODS: The study enrolled 95 PIGD patients recruited by the Parkinson's Disease Specialty in the Second Affiliated Hospital of Soochow University during June 2019-2021. On the basis of the TCS results, the PIGD patients were assigned to the PD with SN hyperechogenicity (SN+) group (n = 60) and PD without SN hyperechogenicity (SN-) group (n = 35). Meanwhile, 49 sex- and age-matched healthy individuals were included in the control group. All participants underwent blood tests. Differences in the iron metabolism parameters among the three groups and the correlation between SN hyperechogenicity and serum iron metabolism parameters were analyzed. RESULTS: Serum ferritin, ceruloplasmin and transferrin levels were lower in the SN+ and SN- groups than in the control group (all p values <0.001). The serum ceruloplasmin level was lower in the SN+ group (0.23 [0.20, 0.25] g/L) than in the SN- group (0.25 [0.22, 0.29] g/L) (p = 0.001), and the proportion of patients with an abnormal ceruloplasmin level was higher in the SN+ group than in the SN- group (43.3% [26/60] vs. 14.3% [5/35], χ2 = 8.484, p = 0.004). Moreover, the SN hyperechogenicity area was negatively correlated with the serum transferrin level (r = -0.428, p < 0.001). CONCLUSION: Decreased serum ceruloplasmin levels may be associated with SN hyperechogenicity development in PIGD patients. The SN hyperechogenicity area is negatively correlated with the serum transferrin level.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Ceruloplasmin , Gait , Substantia Nigra/diagnostic imaging , Transferrins , Iron
17.
Sci Rep ; 13(1): 15908, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741947

ABSTRACT

The noradrenergic fibers of the locus coeruleus, together with mossy fibers and climbing fibers, comprise the three types of cerebellar afferents that modulate the cerebellar neuronal circuit. We previously demonstrated that noradrenaline (NA) modulated synaptic transmission in the mouse cerebellar cortex via adrenergic receptors (ARs). In the present study, we investigated the effect of NA on facial stimulation-evoked cerebellar molecular layer interneuron (MLI)-Purkinje cell (PC) synaptic transmission in urethane-anesthetized mice using an in vivo cell-attached recording technique and a pharmacological method. MLI-PC synaptic transmission was induced by air-puff stimulation (duration: 60 ms) of the ipsilateral whisker pad, which exhibited positive components (P1 and P2) accompanied by a pause in simple spike activity. Cerebellar molecular layer application of NA (15 µM) decreased the amplitude and area under the curve of P1, and the pause in simple spike activity, but increased the P2/P1 ratio. The NA-induced decrease in P1 amplitude was concentration-dependent, and the half-inhibitory concentration was 10.94 µM. The NA-induced depression of facial stimulation-evoked MLI-PC GABAergic synaptic transmission was completely abolished by blockade of α-ARs or α2-ARs, but not by antagonism of α1-ARs or ß-ARs. Bath application of an α2-AR agonist inhibited MLI-PC synaptic transmission and attenuated the effect of NA on the synaptic response. NA-induced depression of MLI-PC synaptic transmission was completely blocked by a mixture of α2A- and 2B-AR antagonists, and was abolished by inhibition of protein kinase A. In addition, electrical stimulation of the molecular layer evoked MLI-PC GABAergic synaptic transmission in the presence of an AMPA receptor antagonist, which was inhibited by NA through α2-ARs. Our results indicate that NA inhibits MLI-PC GABAergic synaptic transmission by reducing GABA release via an α2-AR/PKA signaling pathway.


Subject(s)
Norepinephrine , Purkinje Cells , Animals , Mice , Norepinephrine/pharmacology , Signal Transduction , Synaptic Transmission , Interneurons , Cyclic AMP-Dependent Protein Kinases
18.
J Headache Pain ; 24(1): 111, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592229

ABSTRACT

BACKGROUND: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine. METHODS: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes. RESULTS: We identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine. CONCLUSIONS: Our proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.


Subject(s)
Migraine Disorders , Proteome , Humans , Proteome/genetics , Genome-Wide Association Study , Proteomics , Transcriptome , Migraine Disorders/genetics
19.
BMC Geriatr ; 23(1): 494, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587447

ABSTRACT

BACKGROUND: Sarcopenia is commonly seen in the older adults and increases in incidence with age, also in Parkinson's disease (PD). Although research has indicated that the development of sarcopenia in patients with PD may be related to both motor symptoms and non-motor symptoms (NMS), the precise relationship between the two conditions remains unclear. Therefore, we aimed to investigate the incidence of sarcopenia in patients with PD and its association with NMS. METHODS: The study included 123 patients with PD and 38 age- and sex-matched healthy controls (HC). All participants were evaluated for sarcopenia using the 2019 Asian Sarcopenia Diagnostic Criteria, and patients with PD underwent standard assessments of motor symptoms and NMS. Multiple logistic regression and receiver operating characteristic (ROC) curve analyses were used to examine the association between sarcopenia and NMS in patients with PD. RESULTS: The incidence of sarcopenia was significantly higher in patients with PD than in HC (26.8% vs. 10.4%, p = 0.046). Multiple logistic regression analysis revealed that poorer sleep quality (odds ratio [OR]: 1.245; 95% confidence interval [CI]: 1.011-1.533; p = 0.040) and fatigue (OR: 1.085, 95% CI: 1.006-1.170, p = 0.034) were independently associated with sarcopenia. ROC analysis indicated that the optimal cut-off value for Pittsburgh Sleep Quality Index (PSQI) scores was 10, with 72.7% sensitivity and 74.4% specificity (area under the curve [AUC] = 0.776, 95% CI: 0.683-0.868, p < 0.001). The optimal cut-off value for Fatigue Severity Scale (FSS) scores was 39, with 87% sensitivity and 50% specificity (AUC = 0.725, 95% CI: 0.629 -0.820, p < 0.001). Joint use of FSS and PSQI scores increased the predictive value for sarcopenia(AUC = 0.804, 95% CI: 0.724-0.885, p < 0.001). CONCLUSION: Patients with PD are more susceptible to sarcopenia than healthy older adults, and fatigue and poorer sleep are positively associated with sarcopenia. Further longitudinal studies are needed to clarify the causal relationships.


Subject(s)
Parkinson Disease , Sarcopenia , Humans , Aged , Cross-Sectional Studies , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , East Asian People , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Fatigue
20.
Acta Pharmacol Sin ; 44(12): 2418-2431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37563446

ABSTRACT

Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 µg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 µg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.


Subject(s)
Parkinson Disease , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Humans , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Oxidopamine , Parkinson Disease/drug therapy , Synaptic Transmission , Pain , Extracellular Signal-Regulated MAP Kinases/metabolism , Posterior Horn Cells/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL