Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37459216

ABSTRACT

In this paper, we address the issue of testing two-dimensional Gaussian processes with a defined cross-dependency structure. Multivariate Gaussian processes are widely used in various applications; therefore, it is essential to identify the theoretical model that accurately describes the data. While it is relatively straightforward to do so in a one-dimensional case, analyzing multi-dimensional vectors requires considering the dependency between the components, which can significantly affect the efficiency of statistical methods. The testing methodology presented in this paper is based on the sample cross-covariance function and can be considered a natural generalization of the approach recently proposed for testing one-dimensional Gaussian processes based on the sample autocovariance function. We verify the efficiency of this procedure on three classes of two-dimensional Gaussian processes: Brownian motion, fractional Brownian motion, and two-dimensional autoregressive discrete-time process. The simulation results clearly demonstrate the effectiveness of the testing methodology, even for small sample sizes. The theoretical and simulation results are supported by analyzing two-dimensional real-time series that describe the main risk factors of a mining company, namely, copper price and exchange rates (USDPLN). We believe that the introduced methodology is intuitive and relatively simple to implement, and thus, it can be applied in many real-world scenarios where multi-dimensional data are examined.

2.
Chaos ; 33(1): 013128, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36725641

ABSTRACT

In this paper, we introduce a novel framework that allows efficient stochastic process discrimination. The underlying test statistic is based on even empirical moments and generalizes the time-averaged mean-squared displacement framework; the test is designed to allow goodness-of-fit statistical testing of processes with stationary increments and a finite-moment distribution. In particular, while our test statistic is based on a simple and intuitive idea, it enables efficient discrimination between finite- and infinite-moment processes even if the underlying laws are relatively close to each other. This claim is illustrated via an extensive simulation study, e.g., where we confront α-stable processes with stability index close to 2 with their standard Gaussian equivalents. For completeness, we also show how to embed our methodology into the real data analysis by studying the real metal price data.

SELECTION OF CITATIONS
SEARCH DETAIL