Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 68(4): e0137323, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38380945

ABSTRACT

Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species. This compound demonstrates potent inhibitory activity and high on-target selectivity for recombinant HIV-1 protease versus other aspartic proteases tested. In cell culture, GS-9770 inhibits Gag polyprotein cleavage and shows nanomolar anti-HIV-1 potency in primary human cells permissive to HIV-1 infection and against a broad range of HIV subtypes. GS-9770 demonstrates an improved resistance profile against a panel of patient-derived HIV-1 isolates with resistance to atazanavir and darunavir. In resistance selection experiments, GS-9770 prevented the emergence of breakthrough HIV-1 variants at all fixed drug concentrations tested and required multiple protease substitutions to enable outgrowth of virus exposed to escalating concentrations of GS-9770. This compound also remained fully active against viruses resistant to drugs from other antiviral classes and showed no in vitro antagonism when combined pairwise with drugs from other antiretroviral classes. Collectively, these preclinical data identify GS-9770 as a potent, non-peptidomimetic once-daily oral HIV PI with potential to overcome the persistent requirement for pharmacological boosting with this class of antiretroviral agents.


Subject(s)
HIV Infections , HIV Protease Inhibitors , HIV-1 , Humans , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Darunavir/pharmacology , Darunavir/therapeutic use , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , Drug Resistance, Viral , HIV-1/genetics , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Protease/genetics , HIV Protease/metabolism
2.
Hepatol Commun ; 6(9): 2298-2309, 2022 09.
Article in English | MEDLINE | ID: mdl-35735253

ABSTRACT

Dysregulated hepatocyte lipid metabolism is a hallmark of hepatic lipotoxicity and contributes to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl CoA carboxylase (ACC) inhibitors decrease hepatocyte lipotoxicity by inhibiting de novo lipogenesis and concomitantly increasing fatty acid oxidation (FAO), and firsocostat, a liver-targeted inhibitor of ACC1/2, is under evaluation clinically in patients with NASH. ACC inhibition is associated with improvements in indices of NASH and reduced liver triglyceride (TG) content, but also increased circulating TG in subjects with NASH and preclinical rodent models. Here we evaluated whether enhancing hepatocyte FAO by combining ACC inhibitors with peroxisomal proliferator-activated receptor (PPAR) or thyroid hormone receptor beta (THRß) agonists could drive greater liver TG reduction and NASH/antifibrotic efficacy, while ameliorating ACC inhibitor-induced hypertriglyceridemia. In high-fat diet-fed dyslipidemic rats, the addition of PPAR agonists fenofibrate (Feno), elafibranor (Ela), lanifibranor (Lani), seladelpar (Sela) or saroglitazar (Saro), or the THRb agonist resmetirom (Res), to an analogue of firsocostat (ACCi) prevented ACCi-induced hypertriglyceridemia. However, only PPARα agonists (Feno and Ela) and Res provided additional liver TG reduction. In the choline-deficient high-fat diet rat model of advanced liver fibrosis, neither PPARα (Feno) nor THRß (Res) agonism augmented the antifibrotic efficacy of ACCi. Conclusion: These data suggest that combination therapies targeting hepatocyte lipid metabolism may have beneficial effects on liver TG reduction; however, they may not be sufficient to drive fibrosis regression.


Subject(s)
Fenofibrate , Hypertriglyceridemia , Non-alcoholic Fatty Liver Disease , Acetates , Acetyl-CoA Carboxylase , Animals , Fenofibrate/pharmacology , Humans , Liver Cirrhosis/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , PPAR alpha/therapeutic use , Rats , Triglycerides/therapeutic use
3.
J Hepatol ; 73(4): 896-905, 2020 10.
Article in English | MEDLINE | ID: mdl-32376414

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Acetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step of de novo lipogenesis and regulates fatty acid ß-oxidation in hepatocytes. ACC inhibition reduces hepatic fat content and markers of liver injury in patients with NASH; however, the effect of ACC inhibition on liver fibrosis has not been reported. METHODS: A direct role for ACC in fibrosis was evaluated by measuring de novo lipogenesis, procollagen production, gene expression, glycolysis, and mitochondrial respiration in hepatic stellate cells (HSCs) in the absence or presence of small molecule inhibitors of ACC. ACC inhibitors were evaluated in rodent models of liver fibrosis induced by diet or the hepatotoxin, diethylnitrosamine. Fibrosis and hepatic steatosis were evaluated by histological and biochemical assessments. RESULTS: Inhibition of ACC reduced the activation of TGF-ß-stimulated HSCs, as measured by both α-SMA expression and collagen production. ACC inhibition prevented a metabolic switch necessary for induction of glycolysis and oxidative phosphorylation during HSC activation. While the molecular mechanism by which inhibition of de novo lipogenesis blocks glycolysis and oxidative phosphorylation is unknown, we definitively show that HSCs require de novo lipogenesis for activation. Consistent with this direct antifibrotic mechanism in HSCs, ACC inhibition reduced liver fibrosis in a rat choline-deficient, high-fat diet model and in response to chronic diethylnitrosamine-induced liver injury (in the absence of hepatic lipid accumulation). CONCLUSIONS: In addition to reducing lipid accumulation in hepatocytes, ACC inhibition also directly impairs the profibrogenic activity of HSCs. Thus, small molecule inhibitors of ACC may lessen fibrosis by reducing lipotoxicity in hepatocytes and by preventing HSC activation, providing a mechanistic rationale for the treatment of patients with advanced liver fibrosis due to NASH. LAY SUMMARY: Hepatic fibrosis is the most important predictor of liver-related outcomes in patients with non-alcoholic steatohepatitis (NASH). Small molecule inhibitors of acetyl-CoA carboxylase (ACC) reduce hepatic fat content and markers of liver injury in patients with NASH. Herein, we report that inhibition of ACC and de novo lipogenesis also directly suppress the activation of hepatic stellate cells - the primary cell responsible for generating fibrotic scar in the liver - and thus fibrosis. These data provide further evidence for the use of ACC inhibitors to treat patients with NASH and advanced fibrosis.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Hepatic Stellate Cells/metabolism , Lipogenesis/drug effects , Liver Cirrhosis/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Biomarkers/metabolism , Cell Line , Diet, High-Fat/adverse effects , Disease Models, Animal , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Humans , Liver/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Rats , Rats, Wistar
4.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31167910

ABSTRACT

The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B/metabolism , Hepatitis B/virology , Trans-Activators/metabolism , Zinc/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acids , Binding Sites , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Humans , Protein Binding , Recombinant Fusion Proteins , Trans-Activators/chemistry , Viral Regulatory and Accessory Proteins
5.
Bioorg Med Chem Lett ; 28(3): 541-546, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29254643

ABSTRACT

We hereby disclose the discovery of inhibitors of CaMKII (7h and 7i) that are highly potent in rat ventricular myocytes, selective against hERG and other off-target kinases, while possessing good CaMKII tissue isoform selectivity (cardiac γ/δ vs. neuronal α/ß). In vitro and in vivo ADME/PK studies demonstrated the suitability of these CaMKII inhibitors for PO (7h rat F = 73%) and IV pharmacological studies.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
Proc Natl Acad Sci U S A ; 113(33): 9274-9, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27489345

ABSTRACT

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is the most potent nucleoside analog inhibitor of HIV reverse transcriptase (RT). It retains a 3'-OH yet acts as a chain-terminating agent by diminishing translocation from the pretranslocation nucleotide-binding site (N site) to the posttranslocation primer-binding site (P site). Also, facile misincorporation of EFdA-monophosphate (MP) results in difficult-to-extend mismatched primers. To understand the high potency and unusual inhibition mechanism of EFdA, we solved RT crystal structures (resolutions from 2.4 to 2.9 Å) that include inhibition intermediates (i) before inhibitor incorporation (catalytic complex, RT/DNA/EFdA-triphosphate), (ii) after incorporation of EFdA-MP followed by dT-MP (RT/DNAEFdA-MP(P)• dT-MP(N) ), or (iii) after incorporation of two EFdA-MPs (RT/DNAEFdA-MP(P)• EFdA-MP(N) ); (iv) the latter was also solved with EFdA-MP mismatched at the N site (RT/DNAEFdA-MP(P)• EFdA-MP(*N) ). We report that the inhibition mechanism and potency of EFdA stem from interactions of its 4'-ethynyl at a previously unexploited conserved hydrophobic pocket in the polymerase active site. The high resolution of the catalytic complex structure revealed a network of ordered water molecules at the polymerase active site that stabilize enzyme interactions with nucleotide and DNA substrates. Finally, decreased translocation results from favorable interactions of primer-terminating EFdA-MP at the pretranslocation site and unfavorable posttranslocation interactions that lead to observed localized primer distortions.


Subject(s)
Anti-HIV Agents/pharmacology , Deoxyadenosines/pharmacology , HIV Reverse Transcriptase/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability
7.
FASEB J ; 29(1): 70-80, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25351987

ABSTRACT

Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Peptide Fragments/immunology , Amino Acid Sequence , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Binding Sites, Antibody/genetics , Crystallography, X-Ray , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV-1/chemistry , HIV-1/genetics , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Interaction Domains and Motifs , Sequence Homology, Amino Acid , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Static Electricity
8.
J Biol Chem ; 289(35): 24533-48, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-24970894

ABSTRACT

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside analog that, unlike approved anti-human immunodeficiency virus type 1 (HIV-1) nucleoside reverse transcriptase inhibitors, has a 3'-OH and exhibits remarkable potency against wild-type and drug-resistant HIVs. EFdA triphosphate (EFdA-TP) is unique among nucleoside reverse transcriptase inhibitors because it inhibits HIV-1 reverse transcriptase (RT) with multiple mechanisms. (a) EFdA-TP can block RT as a translocation-defective RT inhibitor that dramatically slows DNA synthesis, acting as a de facto immediate chain terminator. Although non-translocated EFdA-MP-terminated primers can be unblocked, they can be efficiently converted back to the EFdA-MP-terminated form. (b) EFdA-TP can function as a delayed chain terminator, allowing incorporation of an additional dNTP before blocking DNA synthesis. In such cases, EFdA-MP-terminated primers are protected from excision. (c) EFdA-MP can be efficiently misincorporated by RT, leading to mismatched primers that are extremely hard to extend and are also protected from excision. The context of template sequence defines the relative contribution of each mechanism and affects the affinity of EFdA-MP for potential incorporation sites, explaining in part the lack of antagonism between EFdA and tenofovir. Changes in the type of nucleotide before EFdA-MP incorporation can alter its mechanism of inhibition from delayed chain terminator to immediate chain terminator. The versatility of EFdA in inhibiting HIV replication by multiple mechanisms may explain why resistance to EFdA is more difficult to emerge.


Subject(s)
Deoxyadenosines/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Base Sequence , Catalytic Domain , Cell Line , DNA Primers , HIV Reverse Transcriptase/metabolism , Kinetics , Surface Plasmon Resonance
9.
Antimicrob Agents Chemother ; 57(12): 6254-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100493

ABSTRACT

Nucleos(t)ide reverse transcriptase inhibitors (NRTIs) form the backbone of most anti-HIV therapies. We have shown that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a highly effective NRTI; however, the reasons for the potent antiviral activity of EFdA are not well understood. Here, we use a combination of structural, computational, and biochemical approaches to examine how substitutions in the sugar or adenine rings affect the incorporation of dA-based NRTIs like EFdA into DNA by HIV RT and their susceptibility to deamination by adenosine deaminase (ADA). Nuclear magnetic resonance (NMR) spectroscopy studies of 4'-substituted NRTIs show that ethynyl or cyano groups stabilize the sugar ring in the C-2'-exo/C-3'-endo (north) conformation. Steady-state kinetic analysis of the incorporation of 4'-substituted NRTIs by RT reveals a correlation between the north conformation of the NRTI sugar ring and efficiency of incorporation into the nascent DNA strand. Structural analysis and the kinetics of deamination by ADA demonstrate that 4'-ethynyl and cyano substitutions decrease the susceptibility of adenosine-based compounds to ADA through steric interactions at the active site. However, the major determinant for decreased susceptibility to ADA is the 2-halo substitution, which alters the pKa of N1 on the adenine base. These results provide insight into how NRTI structural attributes affect their antiviral activities through their interactions with the RT and ADA active sites.


Subject(s)
Deoxyadenosines/chemistry , Deoxyadenosines/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Humans , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
10.
Antimicrob Agents Chemother ; 57(9): 4554-4558, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23796932

ABSTRACT

Drug combination studies of 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) with FDA-approved drugs were evaluated by two different methods, MacSynergy II and CalcuSyn. Most of the combinations, including the combination of the two adenosine analogs EFdA and tenofovir, were essentially additive, without substantial antagonism or synergism. The combination of EFdA and rilpivirine showed apparent synergism. These studies provide information that may be useful for the design of EFdA combination regimens for initial and salvage therapy assessment.

11.
Retrovirology ; 10: 65, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23800377

ABSTRACT

BACKGROUND: The K65R substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is the major resistance mutation selected in patients treated with first-line antiretroviral tenofovir disoproxil fumarate (TDF). 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), is the most potent nucleoside analog RT inhibitor (NRTI) that unlike all approved NRTIs retains a 3'-hydroxyl group and has remarkable potency against wild-type (WT) and drug-resistant HIVs. EFdA acts primarily as a chain terminator by blocking translocation following its incorporation into the nascent DNA chain. EFdA is in preclinical development and its effect on clinically relevant drug resistant HIV strains is critically important for the design of optimal regimens prior to initiation of clinical trials. RESULTS: Here we report that the K65R RT mutation causes hypersusceptibility to EFdA. Specifically, in single replication cycle experiments we found that EFdA blocks WT HIV ten times more efficiently than TDF. Under the same conditions K65R HIV was inhibited over 70 times more efficiently by EFdA than TDF. We determined the molecular mechanism of this hypersensitivity using enzymatic studies with WT and K65R RT. This substitution causes minor changes in the efficiency of EFdA incorporation with respect to the natural dATP substrate and also in the efficiency of RT translocation following incorporation of the inhibitor into the nascent DNA. However, a significant decrease in the excision efficiency of EFdA-MP from the 3' primer terminus appears to be the primary cause of increased susceptibility to the inhibitor. Notably, the effects of the mutation are DNA-sequence dependent. CONCLUSION: We have elucidated the mechanism of K65R HIV hypersusceptibility to EFdA. Our findings highlight the potential of EFdA to improve combination strategies against TDF-resistant HIV-1 strains.


Subject(s)
Adenine/analogs & derivatives , Anti-HIV Agents/pharmacology , Deoxyadenosines/pharmacology , Drug Resistance, Viral , HIV-1/drug effects , Organophosphonates/pharmacology , Adenine/pharmacology , Cell Line , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , Humans , Microbial Sensitivity Tests , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/genetics , Mutation, Missense , Tenofovir
12.
J Biol Chem ; 287(45): 38110-23, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22955279

ABSTRACT

Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Nitriles/pharmacology , Pyrimidines/pharmacology , Amino Acid Substitution , Binding Sites/genetics , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV-1/genetics , Humans , Models, Molecular , Mutation , Nitriles/chemistry , Protein Binding , Protein Structure, Tertiary , Pyrimidines/chemistry , Rilpivirine
13.
J Biol Chem ; 287(35): 29988-99, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22761416

ABSTRACT

Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.g. thymidine-associated mutations) and not by discrimination mechanism mutations (e.g. Q151M complex). Moreover, it attenuated resistance to nevirapine or efavirenz imparted by NNRTI mutations. Although 172K favored RT-DNA binding at an excisable pre-translocation conformation, it decreased excision by thymidine-associated mutation-containing RT. 172K affected DNA handling and decreased RT processivity without significantly affecting the k(cat)/K(m) values for dNTP. Surface plasmon resonance experiments revealed that RT(172K) decreased DNA binding by increasing the dissociation rate. Hence, the increased zidovudine susceptibility of RT(172K) results from its increased dissociation from the chain-terminated DNA and reduced primer unblocking. We solved a high resolution (2.15 Å) crystal structure of RT mutated at 172 and compared crystal structures of RT(172R) and RT(172K) bound to NNRTIs or DNA/dNTP. Our structural analyses highlight differences in the interactions between α-helix E (where 172 resides) and the active site ß9-strand that involve the YMDD loop and the NNRTI binding pocket. Such changes may increase dissociation of DNA, thus suppressing excision-based NRTI resistance and also offset the effect of NNRTI resistance mutations thereby restoring NNRTI binding.


Subject(s)
Anti-HIV Agents/chemistry , Drug Resistance, Viral/genetics , HIV Reverse Transcriptase , Mutation, Missense , Polymorphism, Genetic , Reverse Transcriptase Inhibitors/chemistry , Zidovudine/chemistry , Amino Acid Substitution , Animals , Anti-HIV Agents/pharmacology , Binding Sites , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HeLa Cells , Humans , Protein Structure, Secondary , Reverse Transcriptase Inhibitors/pharmacology , Surface Plasmon Resonance , Zidovudine/pharmacology
14.
PLoS One ; 7(5): e36521, 2012.
Article in English | MEDLINE | ID: mdl-22615777

ABSTRACT

The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.


Subject(s)
DNA Helicases/metabolism , Nucleic Acids/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Substrate Specificity
15.
Antimicrob Agents Chemother ; 56(4): 2048-61, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22252812

ABSTRACT

RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn²âº and not Mg²âº. Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by ∼3.4 Å. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from ∼0.8 to 0.02 µM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 Å) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.


Subject(s)
Anti-HIV Agents/pharmacology , RNA-Directed DNA Polymerase/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/chemistry , Ribonuclease H/physiology , Xenotropic murine leukemia virus-related virus/enzymology , Amino Acid Sequence , Cell Survival/drug effects , Crystallography, X-Ray , DNA Footprinting , HIV Reverse Transcriptase/antagonists & inhibitors , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Indicators and Reagents , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Magnesium/pharmacology , Manganese/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Sequence Data , Moloney murine leukemia virus/drug effects , Moloney murine leukemia virus/enzymology , Naphthyridines/chemical synthesis , Naphthyridines/pharmacology , Plasmids/genetics
16.
Nucleic Acids Res ; 40(1): 345-59, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21908397

ABSTRACT

We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (k(off)) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1.


Subject(s)
HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/metabolism , Xenotropic murine leukemia virus-related virus/enzymology , Adenine/analogs & derivatives , Adenine/pharmacology , Amino Acid Sequence , Aptamers, Nucleotide/pharmacology , DNA/biosynthesis , DNA/metabolism , HIV Reverse Transcriptase/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Moloney murine leukemia virus/enzymology , Mutation , Nucleotides/metabolism , Organophosphonates/pharmacology , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Inhibitors/pharmacology , Sequence Homology, Amino Acid , Tenofovir , Zidovudine/pharmacology , beta-Galactosidase/genetics
17.
Nucleic Acids Res ; 39(18): 8237-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21727088

ABSTRACT

A detailed understanding of how aptamers recognize biological binding partners is of considerable importance in the development of oligonucleotide therapeutics. For antiviral nucleic acid aptamers, current models predict a correlation between broad-spectrum inhibition of viral proteins and suppression of emerging viral resistance, but there is little understanding of how aptamer structures contribute to recognition specificity. We previously established that two independent single-stranded DNA aptamers, R1T and RT1t49(-5), are potent inhibitors of reverse transcriptases (RTs) from diverse branches of the primate lentiviral family, including HIV-1, HIV-2 and SIV(cpz). In contrast, class 1 RNA pseudoknots, such as aptamer T1.1, are specific for RTs from only a few viral clades. Here, we map the binding interfaces of complexes formed between RT and aptamers R1T, RT1t49(-5) and T1.1, using mass spectrometry-based protein footprinting of RT and hydroxyl radical footprinting of the aptamers. These complementary methods reveal that the broad-spectrum aptamers make contacts throughout the primer-template binding cleft of RT. The double-stranded stems of these aptamers closely mimic natural substrates near the RNase H domain, while their binding within the polymerase domain significantly differs from RT substrates. These results inform our perspective on how sustained, broad-spectrum inhibition of RT can be achieved by aptamers.


Subject(s)
Anti-HIV Agents/chemistry , Aptamers, Nucleotide/chemistry , HIV Reverse Transcriptase/chemistry , Reverse Transcriptase Inhibitors/chemistry , Binding Sites , Hydroxyl Radical/chemistry , Mass Spectrometry , Models, Molecular , Protein Footprinting , Protein Structure, Tertiary
18.
J Biol Chem ; 285(49): 38700-9, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20876531

ABSTRACT

The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase (RT) confers clinically significant resistance to both nucleoside and non-nucleoside RT inhibitors (NNRTIs) by mechanisms that are not well understood. We used transient kinetics to characterize the enzymatic properties of N348I RT and determine the biochemical mechanism of resistance to the NNRTI nevirapine (NVP). We demonstrate that changes distant from the NNRTI binding pocket decrease inhibitor binding (increase K(d)(-NVP)) by primarily decreasing the association rate of the inhibitor (k(on-NVP)). We characterized RTs mutated in either p66 (p66(N348I)/p51(WT)), p51 (p66(WT)/p51(N348I)), or both subunits (p66(N348I)/p51(N348I)). Mutation in either subunit caused NVP resistance during RNA-dependent and DNA-dependent DNA polymerization. Mutation in p66 alone (p66(N348I)/p51(WT)) caused NVP resistance without significantly affecting RNase H activity, whereas mutation in p51 caused NVP resistance and impaired RNase H, demonstrating that NVP resistance may occur independently from defects in RNase H function. Mutation in either subunit improved affinity for nucleic acid and enhanced processivity of DNA synthesis. Surprisingly, mutation in either subunit decreased catalytic rates (k(pol)) of p66(N348I)/p51(N348I), p66(N348I)/p51(WT), and p66(WT)/p51(N348I) without significantly affecting affinity for deoxynucleotide substrate (K(d)(-dNTP)). Hence, in addition to providing structural integrity for the heterodimer, p51 is critical for fine tuning catalytic turnover, RNase H processing, and drug resistance. In conclusion, connection subdomain mutation N348I decreases catalytic efficiency and causes in vitro resistance to NVP by decreasing inhibitor binding.


Subject(s)
Drug Resistance, Viral/genetics , HIV Reverse Transcriptase/chemistry , Mutation, Missense , Nevirapine/chemistry , Reverse Transcriptase Inhibitors/chemistry , Amino Acid Substitution , Binding Sites , Catalytic Domain , DNA/biosynthesis , DNA/chemistry , DNA/genetics , DNA, Viral/biosynthesis , DNA, Viral/chemistry , DNA, Viral/genetics , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Humans , Nevirapine/pharmacology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcription/drug effects , Reverse Transcription/genetics , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism
19.
Viruses ; 2(2): 606-638, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20376302

ABSTRACT

HIV-1 Reverse Transcriptase (HIV-1 RT) has been the target of numerous approved anti-AIDS drugs that are key components of Highly Active Anti-Retroviral Therapies (HAART). It remains the target of extensive structural studies that continue unabated for almost twenty years. The crystal structures of wild-type or drug-resistant mutant HIV RTs in the unliganded form or in complex with substrates and/or drugs have offered valuable glimpses into the enzyme's folding and its interactions with DNA and dNTP substrates, as well as with nucleos(t)ide reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTIs) drugs. These studies have been used to interpret a large body of biochemical results and have paved the way for innovative biochemical experiments designed to elucidate the mechanisms of catalysis and drug inhibition of polymerase and RNase H functions of RT. In turn, the combined use of structural biology and biochemical approaches has led to the discovery of novel mechanisms of drug resistance and has contributed to the design of new drugs with improved potency and ability to suppress multi-drug resistant strains.

20.
PLoS One ; 5(12): e15049, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21203539

ABSTRACT

BACKGROUND: Foot-and-Mouth Disease Virus (FMDV) is a picornavirus that infects cloven-hoofed animals and leads to severe losses in livestock production. In the case of an FMD outbreak, emergency vaccination requires at least 7 days to trigger an effective immune response. There are currently no approved inhibitors for the treatment or prevention of FMDV infections. METHODOLOGY/PRINCIPAL FINDINGS: Using a luciferase-based assay we screened a library of compounds and identified seven novel inhibitors of 3Dpol, the RNA-dependent RNA polymerase of FMDV. The compounds inhibited specifically 3Dpol (IC(50)s from 2-17 µM) and not other viral or bacterial polymerases. Enzyme kinetic studies on the inhibition mechanism by compounds 5D9 and 7F8 showed that they are non-competitive inhibitors with respect to NTP and nucleic acid substrates. Molecular modeling and docking studies into the 3Dpol structure revealed an inhibitor binding pocket proximal to, but distinct from the 3Dpol catalytic site. Residues surrounding this pocket are conserved among all 60 FMDV subtypes. Site directed mutagenesis of two residues located at either side of the pocket caused distinct resistance to the compounds, demonstrating that they indeed bind at this site. Several compounds inhibited viral replication with 5D9 suppressing virus production in FMDV-infected cells with EC(50) = 12 µM and EC(90) = 20 µM). SIGNIFICANCE: We identified several non-competitive inhibitors of FMDV 3Dpol that target a novel binding pocket, which can be used for future structure-based drug design studies. Such studies can lead to the discovery of even more potent antivirals that could provide alternative or supplementary options to contain future outbreaks of FMD.


Subject(s)
Antiviral Agents/pharmacology , Foot-and-Mouth Disease Virus/metabolism , RNA-Dependent RNA Polymerase/metabolism , Adenosine Triphosphate/chemistry , Animals , Binding Sites , Catalysis , Cattle , Enzyme Inhibitors , Kinetics , Ligands , Luciferases/metabolism , Models, Chemical , Mutagenesis, Site-Directed , RNA-Dependent RNA Polymerase/chemistry , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...