Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Am J Clin Nutr ; 119(5): 1200-1215, 2024 05.
Article in English | MEDLINE | ID: mdl-38452857

ABSTRACT

BACKGROUND: Heat treatments of dairy, including pasteurization and ultra-high temperature (UHT) processing, alter milk macromolecular structures, and ultimately affect digestion. In vitro, animal, and human studies show faster nutrient release or circulating appearance after consuming UHT milk (UHT-M) compared with pasteurized milk (PAST-M), with a faster gastric emptying (GE) rate proposed as a possible mechanism. OBJECTIVES: To investigate the impact of milk heat treatment on GE as a mechanism of faster nutrient appearance in blood. We hypothesized that GE and circulating nutrient delivery following consumption would be faster for UHT-M than PAST-M. METHODS: In this double-blind randomized controlled cross-over trial, healthy female (n = 20; 27.3 ± 1.4 y, mean ± SD) habitual dairy consumers, consumed 500 mL of either homogenized bovine UHT-M or PAST-M (1340 compared with 1320 kJ). Gastric content volume (GCV) emptying half-time (T50) was assessed over 3 h by magnetic resonance imaging subjective digestive symptoms, plasma amino acid, lipid and B vitamin concentrations, and gastric myoelectrical activity were measured over 5 h. RESULTS: Although GCV T50 did not differ (102 ± 7 min compared with 89 ± 8 min, mean ± SEM, UHT-M and PAST-M, respectively; P = 0.051), GCV time to emptying 25% of the volume was 31% longer following UHT-M compared with PAST-M (42 ± 2 compared with 32 ± 4 min, P = 0.004). Although GCV remained larger for a longer duration following UHT-M (treatment × time interaction, P = 0.002), plasma essential amino acid AUC was greater following UHT-M than PAST-M (55,324 ± 3809 compared with 36,598 ± 5673 µmol·min·L-1, P = 0.006). Heat treatment did not impact gastric myoelectrical activity, plasma appetite hormone markers or subjective appetite scores. CONCLUSIONS: Contrary to expectations, GE was slower with UHT-M, yet, as anticipated, aminoacidemia was greater. The larger GCV following UHT-M suggests that gastric volume may poorly predict circulating nutrient appearance from complex food matrices. Dairy heat treatment may be an effective tool to modify nutrient release by impacting digestion kinetics. CLINICAL TRIAL REGISTRY: www.anzctr.org.au (ACTRN12620000172909).


Subject(s)
Cross-Over Studies , Gastric Emptying , Hot Temperature , Milk , Pasteurization , Female , Animals , Humans , Milk/chemistry , Adult , Cattle , Double-Blind Method , Nutrients , Young Adult
2.
Mol Pharm ; 21(4): 1553-1562, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38440796

ABSTRACT

Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.


Subject(s)
Gastrointestinal Tract , Stomach , Humans , Administration, Oral , Stomach/diagnostic imaging , Contrast Media , Magnetic Resonance Imaging/methods , Dosage Forms , Solubility , Tablets
3.
PLoS One ; 19(1): e0296311, 2024.
Article in English | MEDLINE | ID: mdl-38165858

ABSTRACT

Recent magnetic resonance imaging (MRI) studies showed that colonic volumes in children are different between health and functional constipation. The length of the colon has however been rarely measured and principally using unphysiological colon preparations or cadaver studies. The main objective of this study was to measure the length of the undisturbed colon in children with functional constipation (FC) and healthy controls. Here, the colon of 19 healthy controls (10-18 years old) and 16 children with FC (7-18 years old) was imaged using MRI. Different regions of the colon (ascending, transverse, descending, and sigmoid-rectum) were first segmented manually on the MRI images. Three-dimensional skeletonization image analysis methods were then used to reduce the regions of interest to a central, measurable line. Total colon length (corrected for body surface area) in healthy controls was 56±2 cm/m2 (mean±SEM). Total colon length was significantly longer in children with FC 69±3 cm/m2 compared to controls (p = 0.0037). The colon regions showing the largest differences between groups were the ascending colon (p = 0.0479) and the sigmoid-rectum (p = 0.0003). In a linear regression model, there was a positive significant correlation between total colon length and age (R = 0.45, p = 0.0064), height (R = 0.49, p = 0.0031), weight (R = 0.46, p = 0.0059) and colon volume (R = 0.4543, p = 0.0061). Our findings showed significant differences in colon lengths between healthy controls and children with constipation. A new objective diagnostic imaging endpoint such as colon length may help to improve knowledge of colon morphology and function and, in turn, understanding of colon functional pathology.


Subject(s)
Colon , Constipation , Humans , Child , Adolescent , Colon/pathology , Colon, Sigmoid , Rectum , Magnetic Resonance Imaging/methods
4.
Food Res Int ; 174(Pt 1): 113490, 2023 12.
Article in English | MEDLINE | ID: mdl-37986496

ABSTRACT

Controlling starch digestion in high glycaemic index staple foods such as white rice is of interest as it has been associated with reduced risk for conditions such as obesity and type-2 diabetes mellitus. Addition of hydrocolloids has been proposed to reduce the rate of post-prandial glucose by controlling the rate of starch hydrolysis. In this work, the potential of a range of hydrocolloids to modify starch digestibility when added (at 1 % maximum concentration) during cooking of white rice was first investigated. Low acyl gellan gum (LAG) showed the highest potential (in-vitro estimated Glycaemic Index reduced by about 20 %, from 94 in the control to 78 in the LAG rice) and was investigated further. While the grains of rice control and rice with LAG appeared similar, SEM images revealed a gel-like layer (a few micrometers in thickness) on the surface of the treated samples. Addition of LAG appeared to also have an effect on the breakdown of a simulated cm-sized bolus. During gastric digestion, bolus breakdown of the rice control was completed after 30 min, while the rice LAG bolus appeared intact after 1 h of observation. This was attributed to strengthening of the LAG gel in the acidic environment of the stomach. During intestinal digestion, rice samples containing 1 % LAG appeared to be less susceptible to breakdown when seen under a microscope and in environmental SEM, while they showed larger rice particle aggregates, compared to rice control. Overall, LAG showed potential to control starch digestion kinetics of white rice with a mechanism that may involve formation of a protective layer on the rice grains (um) that reduces bolus break down (cm) and enzymatic hydrolysis (nm). Outcomes of this work will be used to identify conditions for further relevant in-vitro and in-vivo investigations.


Subject(s)
Oryza , Starch , Starch/metabolism , Oryza/metabolism , Cooking , Hydrolysis , Colloids
5.
AAPS J ; 25(5): 76, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37498389

ABSTRACT

The rate and extent of drug dissolution and absorption from a solid oral dosage form depend largely on the fluid volume along the gastrointestinal tract. Hence, a model built upon the gastric fluid volume profiles can help to predict drug dissolution and subsequent absorption. To capture the great inter- and intra-individual variability (IAV) of the gastric fluid volume in fasted human, a stochastic differential equation (SDE)-based mixed effects model was developed and compared with the ordinary differential equation (ODE)-based model. Twelve fasted healthy adult subjects were enrolled and had their gastric fluid volume measured before and after consumption of 240 mL of water at pre-determined intervals for up to 2 hours post ingestion. The SDE- and ODE-based mixed effects models were implemented and compared using extended Kalman filter algorithm via NONMEM. The SDE approach greatly improved the goodness of fit compared with the ODE counterpart. The proportional and additive measurement error of the final SDE model decreased from 14.4 to 4.10% and from 17.6 to 4.74 mL, respectively. The SDE-based mixed effects model successfully characterized the gastric volume profiles in the fasted healthy subjects, and provided a robust approximation of the physiological parameters in the very dynamic system. The remarkable IAV could be further separated into system dynamics terms and measurement error terms in the SDE model instead of only empirically attributing IAV to measurement errors in the traditional ODE method. The system dynamics were best captured by the random fluctuations of gastric emptying coefficient Kge.


Subject(s)
Gastrointestinal Tract , Stomach , Humans , Adult , Stomach/physiology , Gastrointestinal Tract/metabolism , Fasting/physiology , Gastric Emptying/physiology , Drug Liberation
6.
Neurogastroenterol Motil ; 35(8): e14610, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37158374

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) tagging techniques have been applied to the GI tract to assess bowel contractions and content mixing. We aimed to evaluate the dependence of a tagging measurement (for assessing chyme mixing) on inter-observer variability in both the ascending colon (AC) and descending colon (DC) and to investigate the temporal variation and hence reliability of the colonic tagging technique by acquiring multiple measurements over time on healthy participants. METHODS: Two independent datasets of healthy adults were used for the retrospective inter-observer variability (Study 1: 13 datasets and Study 2: 31 datasets), and ten participants were scanned for the prospective temporal variation study following a 1 L mannitol oral preparation. All colonic tagging data were acquired on 3 T MRI scanners. The mean and the standard deviation (SD) maps were generated pixel-by-pixel using custom-written software in MATLAB. The colonic regions of interest were defined using MIPAV software. Bland-Altman plots and scatter plots were used for the inter-observer variability. The mean and SD of all repeated measures for each subject were calculated along with a one-way ANOVA to test for variations with time. RESULTS: Scatter plots and Bland-Altman plots showed a large range of data with low variation and small limits of agreements (<5% CoV). The intraclass correlation coefficient of inter-rater reliability was excellent and 0.97 or above for the AC and DC measurements for both datasets. The temporal variation study shows that there was no significant difference found between the multiple measures with time (p = 0.53, one-way repeated measures ANOVA test). CONCLUSIONS: MRI tagging technique can provide an assessment of colonic chyme mixing. The inter-observer study data showed high inter-rater agreement. The temporal variation study showed some individual variations with time suggesting multiple measurements may be needed to increase accuracy.


Subject(s)
Magnetic Resonance Imaging , Adult , Humans , Healthy Volunteers , Prospective Studies , Retrospective Studies , Observer Variation , Reproducibility of Results , Magnetic Resonance Imaging/methods
7.
Br J Nutr ; 130(8): 1316-1328, 2023 10 28.
Article in English | MEDLINE | ID: mdl-36746392

ABSTRACT

Inclusion in nasogastric tube feeds (NGTF) of acid-sensitive, seaweed-derived alginate, expected to form a reversible gel in the stomach, may create a more normal intragastric state and modified gastrointestinal responses. This may ameliorate NGTF-associated risk of diarrhoea, upper gastrointestinal symptoms and appetite suppression. In a randomised, crossover, comparison study, undertaken in twelve healthy males, an alginate-containing feed (F + ALG) or one that was alginate-free (F-ALG) (300 ml) was given over 1 h with a 7-14-d washout period between treatments. Baseline and for 4-h post-feed initiation, MRI measurements were made to establish small bowel water content (SBWC), gastric contents volume (GCV) and appearance, and superior mesenteric artery blood flux. Blood glucose and gut peptides were measured. Subjective appetite and upper gastrointestinal symptoms scores were obtained. Ad libitum pasta consumption 3-h post-feeding was measured. F + ALG exhibited a gastric appearance consistent with gelling surrounded by a freely mobile water halo. Significant main effects of feed were seen for SBWC (P = 0·03) and peptide YY (PYY) (P = 0·004) which were attributed to generally higher values for SBWC with F + ALG (max difference between adjusted means 72 ml at 210 min) and generally lower values for PYY with F + ALG. GCV showed a faster reduction with F + ALG, less between-participant variation and a feed-by-time interaction (P = 0·04). Feed-by-time interactions were also seen with glucagon-like-peptide 1 (GLP-1) (P = 0·02) and glucose-dependent insulinotropic polypeptide (GIP) (P = 0·002), both showing a blunted response with F + ALG. Apparent intragastric gelling with F + ALG and subsequent differences in gastrointestinal and endocrine responses have been demonstrated between an alginate-containing and alginate-free feed.


Subject(s)
Alginates , Gastrointestinal Diseases , Male , Humans , Alginates/chemistry , Alginates/pharmacology , Enteral Nutrition , Intestine, Small , Gastric Inhibitory Polypeptide , Appetite , Magnetic Resonance Imaging , Peptide YY , Water , Cross-Over Studies , Insulin
8.
Frontline Gastroenterol ; 13(e1): e28-e34, 2022.
Article in English | MEDLINE | ID: mdl-35812031

ABSTRACT

The use of cross-sectional imaging and ultrasonography has long complemented endoscopic assessment of inflammatory bowel disease (IBD). Clinical symptoms alone are often not enough to assess disease activity, so a reliance on non-invasive techniques is essential. In this paper, we aim to examine the current use of radiological modalities in aiding the management of patients with IBD. We focus on the various sections of the gastrointestinal tract and how different modalities can aid in assessing current disease state and response to treatments. We also have a look at how newer sequences in cross-sectional imaging and ultrasonography can allow for better differentiation of disease activity (ie, fibrotic vs inflammatory) as well improve evaluation of small bowel, colonic and perianal disease. Furthermore, we examine how advanced image processing has the potential to allow radiology to be a surrogate for biomarkers. An example of this is explored when reviewing the ability of MR sequences to quantify visceral fat, which potentially plays a role in determining disease activity in Crohn's disease. Lastly, we look into the expected role for artificial intelligence to be used as an adjunct to radiology to better improve IBD evaluation.

10.
Pharmaceutics ; 14(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35456635

ABSTRACT

Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on "Understanding Gastrointestinal Absorption-related Processes (UNGAP)" was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.

11.
Nutrients ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35405934

ABSTRACT

Nausea, vomiting and abdominal pain in diabetic patients are often attributed to diabetic gastropathy (DG). Post-pyloric ("jejunal") enteral nutrition (JN) may improve nutrition and glycaemia in difficult cases. The acute effects of JN on postprandial symptoms and gastric function in DG patients has not been studied. DG patients with moderate to severe symptoms (gastroparesis cardinal symptom index (GCSI) > 27), diabetic controls without symptoms (DC; GCSI < 14) and healthy controls (HV) were entered into a randomized, double blind controlled trial. JN with liquid nutrient (2 kcal/min) or water was infused for 60 min prior to ingestion of a standardized mixed solid/liquid test meal. Outcomes included postprandial symptoms and effects on gastrointestinal (GI)−peptide hormones and gastric emptying (GE) assessed by magnetic resonance imaging (MRI). Nine DG, nine DC and twelve HV were recruited. DG patients reported more symptoms after meals than other groups (p < 0.05). Post-prandial symptoms were reduced after JN in DG patients (p < 0.01). GE was more rapid after JN in DG and DC patients (p < 0.05). JN induced a GI−peptide response in all subjects; however, this was less pronounced in diabetic groups. JN has beneficial effects on DG patients' symptoms after a meal. The mechanism is not primarily mediated by effects on GE, but appears to involve other aspects of GI function, including visceral sensitivity.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Gastroparesis , Diabetes Mellitus/therapy , Double-Blind Method , Gastric Emptying , Gastroparesis/drug therapy , Humans , Postprandial Period/physiology
12.
Pharmaceutics ; 14(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35214003

ABSTRACT

Oral specially coated formulations have the potential to improve treatment outcomes of a range of diseases in distal intestinal tract whilst limiting systemic drug absorption and adverse effects. Their development is challenging, partly because of limited knowledge of the physiological and pathological distal gastrointestinal factors, including colonic chyme fluid distribution and motor function. Recently, non-invasive techniques such as magnetic resonance imaging (MRI) have started to provide novel important insights. In this feasibility study, we formulated a coated capsule consisting of a hydroxypropyl methylcellulose (HPMC) shell, coated with a synthetic polymer based on polymethacrylate-based copolymer (Eudragit®) that can withstand the upper gastrointestinal tract conditions. The capsule was filled with olive oil as MRI-visible marker fluid. This allowed us to test the ability of MRI to track such a coated capsule in the gastrointestinal tract and to assess whether it is possible to image its loss of integrity by exploiting the ability of MRI to image fat and water separately and in combination. Ten healthy participants were administered capsules with varying amounts of coating and underwent MRI imaging of the gastrointestinal tract at 45 min intervals. The results indicate that it is feasible to track the capsules present in the gastrointestinal tract at different locations, as they were detected in all 10 participants. By the 360 min endpoint of the study, in nine participants the capsules were imaged in the small bowel, in eight participants in the terminal ileum, and in four in the colon. Loss of capsule integrity was observed in eight participants, occurring predominantly in distal intestinal regions. The data indicate that the described approach could be applied to assess performance of oral formulations in undisturbed distal gastrointestinal regions, without the need for ionizing radiation or contrast agents.

13.
Pharmaceutics ; 14(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057077

ABSTRACT

The performance of solid oral dosage forms targeting the colon is typically evaluated using standardised pharmacopeial dissolution apparatuses. However, these fail to replicate colonic hydrodynamics. This study develops a digital twin of the Dynamic Colon Model; a physiologically representative in vitro model of the human proximal colon. Magnetic resonance imaging of the Dynamic Colon Model verified that the digital twin robustly replicated flow patterns under different physiological conditions (media viscosity, volume, and peristaltic wave speed). During local contractile activity, antegrade flows of 0.06-0.78 cm s-1 and backflows of -2.16--0.21 cm s-1 were measured. Mean wall shear rates were strongly time and viscosity dependent although peaks were measured between 3.05-10.12 s-1 and 5.11-20.34 s-1 in the Dynamic Colon Model and its digital twin respectively, comparable to previous estimates of the USPII with paddle speeds of 25 and 50 rpm. It is recommended that viscosity and shear rates are considered when designing future dissolution test methodologies for colon-targeted formulations. In the USPII, paddle speeds >50 rpm may not recreate physiologically relevant shear rates. These findings demonstrate how the combination of biorelevant in vitro and in silico models can provide new insights for dissolution testing beyond established pharmacopeial methods.

14.
Gut ; 71(5): 919-927, 2022 05.
Article in English | MEDLINE | ID: mdl-34353864

ABSTRACT

OBJECTIVE: Health-promoting dietary fibre including inulin often triggers gastrointestinal symptoms in patients with IBS, limiting their intake. Our aim was to test if coadministering psyllium with inulin would reduce gas production. DESIGN: A randomised, four-period, four-treatment, placebo-controlled, crossover trial in 19 patients with IBS. Subjects ingested a 500 mL test drink containing either inulin 20 g, psyllium 20 g, inulin 20 g+ psyllium 20 g or dextrose 20 g (placebo). Breath hydrogen was measured every 30 min with MRI scans hourly for 6 hours. Faecal samples from a subset of the patients with IBS were tested using an in vitro fermentation model. Primary endpoint was colonic gas assessed by MRI. RESULTS: Colonic gas rose steadily from 0 to 6 hours, with inulin causing the greatest rise, median (IQR) AUC(0-360 min) 3145 (848-6502) mL·min. This was significantly reduced with inulin and psyllium coadministration to 618 (62-2345) mL·min (p=0.02), not significantly different from placebo. Colonic volumes AUC(0-360 min) were significantly larger than placebo for both inulin (p=0.002) and inulin and psyllium coadministration (p=0.005). Breath hydrogen rose significantly from 120 min after inulin but not psyllium; coadministration of psyllium with inulin delayed and reduced the maximum increase, AUC(0-360 min) from 7230 (3255-17910) ppm·hour to 1035 (360-4320) ppm·hour, p=0.007.Fermentation in vitro produced more gas with inulin than psyllium. Combining psyllium with inulin did not reduce gas production. CONCLUSIONS: Psyllium reduced inulin-related gas production in patients with IBS but does not directly inhibit fermentation. Whether coadministration with psyllium increases the tolerability of prebiotics in IBS warrants further study. TRIAL REGISTRATION NUMBER: NCT03265002.


Subject(s)
Irritable Bowel Syndrome , Psyllium , Breath Tests , Fermentation , Humans , Hydrogen/analysis , Inulin/metabolism , Magnetic Resonance Imaging
15.
Aliment Pharmacol Ther ; 55(3): 327-338, 2022 02.
Article in English | MEDLINE | ID: mdl-34716925

ABSTRACT

BACKGROUND: New developments in MRI have allowed the non-invasive, accurate measurement of the small bowel water content (SBWC). AIMS: To collate studies measuring SBWC following ingestion of a range of foods in both health and disease to provide data for adequately powering future studies in this area. METHODS: This collation brings together 29 studies including 954 participants (530 healthy, 54 diverticulosis, 255 IBS, 53 functional constipation, 12 cystic fibrosis, 15 Crohn's disease, 20 coeliac disease, 15 scleroderma) which have been carried out in a single centre using comparable study designs. RESULTS: Fasting SBWC (mean 82 [SD 65] mL) shows high variability with a small decline with advancing age (healthy volunteers only; individual patient data). Fasting values are increased in untreated coeliac disease (202 [290] mL, P = 0.004). Post-prandial SBWC shows less intra-individual variability than fasting values in healthy volunteers. SBWC is increased by eating, most markedly by high fat meals but also by fibre, both viscous and particulate. Indigestible residue accumulates in late post-prandial period but empties soon after ingestion of a high calorie meal which produces a significant drop (by 50 [52] mL) in healthy volunteers. The associated fall in SBWC is abnormal in people with cystic fibrosis (SBWC reduced by 10 [121] mL, P = 0.002) and in people with irritable bowel syndrome with diarrhoea (SBWC reduced by 17 [43] mL, P = 0.007). CONCLUSIONS: SBWC as assessed by MRI is a valuable biomarker indicating the balance of secretion and absorption in health and disease and the impact of treatments.


Subject(s)
Irritable Bowel Syndrome , Water , Dietary Fiber , Humans , Intestine, Small/diagnostic imaging , Irritable Bowel Syndrome/diagnostic imaging , Magnetic Resonance Imaging
16.
J Cyst Fibros ; 21(3): 502-505, 2022 05.
Article in English | MEDLINE | ID: mdl-34922853

ABSTRACT

People with cystic fibrosis (CF) experience digestive symptoms but the mechanisms are incompletely understood. Here we explore causes and consequences of slower gastrointestinal transit using magnetic resonance imaging (MRI). Twelve people with CF and 12 healthy controls, matched for age and gender, underwent MRI scans, both fasted and after standardised meals, over 6.5 h. Fasted small bowel motility scores were lower in CF than in controls. No difference in ascending colon chyme T1 was detected. The difference in texture between small bowel and colon contents, seen in health, was diminished in CF. The ascending colon in CF participants had an abnormal appearance compared to controls. MRI offers unique potential to evaluate gut luminal content, colonic mucosa and intestinal motor activity. These new data support the theoretical cycle of desiccation, dysmotility and delayed transit as a cause of gastrointestinal symptoms in CF.


Subject(s)
Cystic Fibrosis , Gastrointestinal Motility , Gastrointestinal Tract , Gastrointestinal Transit , Humans , Magnetic Resonance Imaging
17.
Pharmaceutics ; 13(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959459

ABSTRACT

Development of specific medical devices (MDs) is required to meet the healthcare needs of children and young people (CYP). In this context, MD development should address changes in growth and psychosocial maturation, physiology, and pathophysiology, and avoid inappropriate repurposing of adult technologies. Underpinning the development of MD for CYP is the need to ensure MD safety and effectiveness through pediatric MD-specific regulations. Contrary to current perceptions of limited market potential, the global pediatric healthcare market is expected to generate around USD 15,984 million by 2025. There are 1.8 billion young people in the world today; 40% of the global population is under 24, creating significant future healthcare market opportunities. This review highlights a number of technology areas that have led to successful pediatric MD, including 3D printing, advanced materials, drug delivery, and diagnostic imaging. To ensure the targeted development of MD for CYP, collaboration across multiple professional disciplines is required, facilitated by a platform to foster collaboration and drive innovation. The European Pediatric Translational Research Infrastructure (EPTRI) will be established as the European platform to support collaboration, including the life sciences industrial sector, to identify unmet needs in child health and support the development, adoption, and commercialization of pediatric MDs.

18.
Nutrients ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684627

ABSTRACT

Oral processing of food results in the formation of food boluses, which are then swallowed and reach the stomach for further digestion. The number, size and surface properties of the boluses will affect their processing and emptying from the stomach. Knowledge of these parameters, however, is incomplete due to limitations of the techniques used. In this work, non-invasive magnetic resonance imaging (MRI) was used for the first time to measure boluses in the stomach a few minutes after swallowing. Three groups of nine healthy participants were fed three different meals: chicken and roasted vegetables (Meal 1), bread and jam (Meal 2) and cheese and yogurt (Meal 3), and then, their stomach content was imaged. The median number of boluses within the stomach was 282, 106 and 9 for Meal 1, Meal 2 and Meal 3 (p < 0.0001) with an average volume of 0.47 mL, 2.4 mL and 13.6 mL, respectively (p < 0.0001). The cohesiveness as well as the meal composition seem to play a key role in the resulting boluses. These new in vivo data from undisturbed organ imaging can improve knowledge of the digestion process, which will, in turn, inform in vitro and in silico modelling of digestion, thus improving their in vitro/in vivo relevance.


Subject(s)
Digestion , Gastrointestinal Contents/diagnostic imaging , Meals , Stomach/diagnostic imaging , Adult , Animals , Bread , Cheese , Female , Gastric Emptying , Healthy Volunteers , Humans , Magnetic Resonance Imaging/methods , Male , Postprandial Period , Poultry , Retrospective Studies , Vegetables , Yogurt , Young Adult
19.
Pharmaceutics ; 13(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34683837

ABSTRACT

Knowledge of luminal flow inside the human colon remains elusive, despite its importance for the design of new colon-targeted drug delivery systems and physiologically relevant in silico models of dissolution mechanics within the colon. This study uses magnetic resonance imaging (MRI) techniques to visualise, measure and differentiate between different motility patterns within an anatomically representative in vitro dissolution model of the human ascending colon: the dynamic colon model (DCM). The segmented architecture and peristalsis-like contractile activity of the DCM generated flow profiles that were distinct from compendial dissolution apparatuses. MRI enabled different motility patterns to be classified by the degree of mixing-related motion using a new tagging method. Different media viscosities could also be differentiated, which is important for an understanding of colonic pathophysiology, the conditions that a colon-targeted dosage form may be subjected to and the effectiveness of treatments. The tagged MRI data showed that the DCM effectively mimicked wall motion, luminal flow patterns and the velocities of the contents of the human ascending colon. Accurate reproduction of in vivo hydrodynamics is an essential capability for a biorelevant mechanical model of the colon to make it suitable for in vitro data generation for in vitro in vivo evaluation (IVIVE) or in vitro in vivo correlation (IVIVC). This work illustrates how the DCM provides new insight into how motion of the colonic walls may control luminal hydrodynamics, driving erosion of a dosage form and subsequent drug release, compared to traditional pharmacopeial methods.

20.
Diagnostics (Basel) ; 11(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34679624

ABSTRACT

Endoscopy is the gold standard for objective assessment of colonic disease activity in inflammatory bowel disease (IBD). Non-invasive colonic imaging using bowel ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) may have a role in quantifying colonic disease activity. We reviewed the diagnostic accuracy of these modalities for assessment of endoscopically or histopathologically defined colonic disease activity in IBD. We searched Embase, MEDLINE, and the Web of Science from inception to 20 September 2021. QUADAS-2 was used to evaluate the studies' quality. A meta-analysis was performed using a bivariate model approach separately for MRI and US studies only, and summary receiver operating characteristic (ROC) curves were obtained. CT studies were excluded due to the absence of diagnostic test data. Thirty-seven studies were included. The mean sensitivity and specificity for MRI studies was 0.75 and 0.91, respectively, while for US studies it was 0.82 and 0.90, respectively. The area under the ROC curves (AUC) was 0.88 (95% CI, 0.82 to 0.93) for MRI, and 0.90 (95% CI, 0.75 to 1.00) for US. Both MRI and US show high diagnostic accuracy in the assessment of colonic disease activity in IBD patients.

SELECTION OF CITATIONS
SEARCH DETAIL