Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38034032

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

2.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37802026

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


CRISPR-Cas Systems , Gene Editing , Genome , DNA/genetics , Optical Tweezers
3.
Nat Commun ; 14(1): 5474, 2023 09 06.
Article En | MEDLINE | ID: mdl-37673883

Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.


Proprotein Convertase 9 , Translocation, Genetic , Animals , Mice , Proprotein Convertase 9/genetics , CRISPR-Cas Systems/genetics , Mutation , Endonucleases/genetics , Streptococcus pyogenes/genetics
4.
Nat Commun ; 14(1): 4761, 2023 08 14.
Article En | MEDLINE | ID: mdl-37580318

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Protein Kinases/genetics , DNA Repair/genetics , DNA/genetics
5.
Diabetes ; 72(10): 1350-1363, 2023 10 01.
Article En | MEDLINE | ID: mdl-36580483

Increased saturated fatty acid (SFA) levels in membrane phospholipids have been implicated in the development of metabolic disease. Here, we tested the hypothesis that increased SFA content in cell membranes negatively impacts adipocyte insulin signaling. Preadipocyte cell models with elevated SFA levels in phospholipids were generated by disrupting the ADIPOR2 locus, which resulted in a striking twofold increase in SFA-containing phosphatidylcholines and phosphatidylethanolamines, which persisted in differentiated adipocytes. Similar changes in phospholipid composition were observed in white adipose tissues isolated from the ADIPOR2-knockout mice. The SFA levels in phospholipids could be further increased by treating ADIPOR2-deficient cells with palmitic acid and resulted in reduced membrane fluidity and endoplasmic reticulum stress in mouse and human preadipocytes. Strikingly, increased SFA levels in differentiated adipocyte phospholipids had no effect on adipocyte gene expression or insulin signaling in vitro. Similarly, increased adipocyte phospholipid saturation did not impair white adipose tissue function in vivo, even in mice fed a high-saturated fat diet at thermoneutrality. We conclude that increasing SFA levels in adipocyte phospholipids is well tolerated and does not affect adipocyte insulin signaling in vitro and in vivo.


Insulin , Phospholipids , Mice , Humans , Animals , Insulin/metabolism , Adipocytes/metabolism , Fatty Acids/metabolism , Cell Membrane/metabolism , Carrier Proteins/metabolism
6.
Nat Commun ; 13(1): 6020, 2022 10 14.
Article En | MEDLINE | ID: mdl-36241646

The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.


Non-alcoholic Fatty Liver Disease , Phosphatidylethanolamines , Animals , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylethanolamines/metabolism
7.
Nat Commun ; 13(1): 1240, 2022 03 24.
Article En | MEDLINE | ID: mdl-35332138

Prime editing recently emerged as a next-generation approach for precise genome editing. Here we exploit DNA double-strand break (DSB) repair to develop two strategies that install precise genomic insertions using an SpCas9 nuclease-based prime editor (PEn). We first demonstrate that PEn coupled to a regular prime editing guide RNA (pegRNA) efficiently promotes short genomic insertions through a homology-dependent DSB repair mechanism. While PEn editing leads to increased levels of by-products, it can rescue pegRNAs that perform poorly with a nickase-based prime editor. We also present a small molecule approach that yields increased product purity of PEn editing. Next, we develop a homology-independent PEn editing strategy, which installs genomic insertions at DSBs through the non-homologous end joining pathway (NHEJ). Lastly, we show that PEn-mediated insertions at DSBs prevent Cas9-induced large chromosomal deletions and provide evidence that continuous Cas9-mediated cutting is one of the mechanisms by which Cas9-induced large deletions arise. Altogether, this work expands the current prime editing toolbox by leveraging distinct DNA repair mechanisms including NHEJ, which represents the primary pathway of DSB repair in mammalian cells.


DNA Breaks, Double-Stranded , DNA End-Joining Repair , Animals , CRISPR-Cas Systems , DNA Repair , Endonucleases/metabolism , Gene Editing , Mammals/genetics
9.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Article En | MEDLINE | ID: mdl-33484963

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Gene Editing/methods , Hepatocytes/transplantation , Mutation , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Ornithine Carbamoyltransferase/genetics , Adult , Aged , Ammonia/metabolism , Animals , Cells, Cultured , Child , Disease Models, Animal , Female , Gene Expression Regulation , Hepatocytes/chemistry , Hepatocytes/cytology , Humans , Introns , Male , Mice , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Orotic Acid/urine , RNA Splicing
10.
Nat Commun ; 12(1): 497, 2021 01 21.
Article En | MEDLINE | ID: mdl-33479216

Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.


CRISPR-Cas Systems , Gene Editing/methods , Genetic Engineering/methods , Heparin-binding EGF-like Growth Factor/genetics , Mutation , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/genetics , Cell Survival/genetics , Cells, Cultured , HCT116 Cells , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice
11.
Article En | MEDLINE | ID: mdl-33444759

How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.


Cell Membrane/metabolism , Endothelial Cells/metabolism , Fatty Acids/metabolism , Membrane Fluidity , Receptors, Adiponectin/genetics , Cell Membrane/genetics , Endothelial Cells/cytology , Fatty Acids/genetics , Gene Deletion , HEK293 Cells , Humans , Receptors, Adiponectin/metabolism , Transcriptional Activation , Transcriptome
12.
Nat Commun ; 11(1): 4903, 2020 09 29.
Article En | MEDLINE | ID: mdl-32994412

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


CRISPR-Cas Systems/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery/methods , Gene Editing/methods , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CRISPR-Associated Protein 9/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Screening Assays, Antitumor/methods , Female , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genetic Vectors/genetics , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Transgenic , RNA, Guide, Kinetoplastida/genetics , Recombination, Genetic/drug effects , Reproducibility of Results , Transcriptional Activation/drug effects , Transfection/methods , Transgenes/genetics
13.
Cells ; 9(5)2020 05 25.
Article En | MEDLINE | ID: mdl-32466303

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.


CRISPR-Cas Systems/genetics , Gene Editing , Small Molecule Libraries/metabolism , Animals , Cell Cycle/genetics , DNA Damage/genetics , DNA Repair/genetics , Humans
14.
Mol Brain ; 13(1): 66, 2020 05 04.
Article En | MEDLINE | ID: mdl-32366277

Alzheimer's disease (AD), the leading cause of dementia, is a chronic neurodegenerative disease. Apolipoprotein E (apoE), which carries lipids in the brain in the form of lipoproteins, plays an undisputed role in AD pathophysiology. A high-throughput phenotypic screen was conducted using a CCF-STTG1 human astrocytoma cell line to identify small molecules that could upregulate apoE secretion. AZ7235, a previously discovered Axl kinase inhibitor, was identified to have robust apoE activity in brain microglia, astrocytes and pericytes. AZ7235 also increased expression of ATP-binding cassette protein A1 (ABCA1), which is involved in the lipidation and secretion of apoE. Moreover, AZ7235 did not exhibit Liver-X-Receptor (LXR) activity and stimulated apoE and ABCA1 expression in the absence of LXR. Target validation studies using AXL-/- CCF-STTG1 cells showed that Axl is required to mediate AZ7235 upregulation of apoE and ABCA1. Intriguingly, apoE expression and secretion was significantly attenuated in AXL-deficient CCF-STTG1 cells and reconstitution of Axl or kinase-dead Axl significantly restored apoE baseline levels, demonstrating that Axl also plays a role in maintaining apoE homeostasis in astrocytes independent of its kinase activity. Lastly, these effects may require human apoE regulatory sequences, as AZ7235 exhibited little stimulatory activity toward apoE and ABCA1 in primary murine glia derived from neonatal human APOE3 targeted-replacement mice. Collectively, we identified a small molecule that exhibits robust apoE and ABCA1 activity independent of the LXR pathway in human cells and elucidated a novel relationship between Axl and apoE homeostasis in human astrocytes.


Alzheimer Disease/metabolism , Apolipoproteins E/metabolism , Astrocytes/drug effects , Astrocytoma/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoproteins E/genetics , Astrocytoma/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Mice , Microglia/drug effects , Microglia/metabolism , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Axl Receptor Tyrosine Kinase
15.
Science ; 364(6437): 286-289, 2019 04 19.
Article En | MEDLINE | ID: mdl-31000663

CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.


CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , DNA Repair , Gene Editing/methods , MRE11 Homologue Protein/metabolism , Sequence Analysis, DNA/methods , Adenoviridae , Animals , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , Cell Line , Chromatin Immunoprecipitation , DNA/chemistry , DNA/genetics , DNA Repair Enzymes/metabolism , Humans , Induced Pluripotent Stem Cells , K562 Cells , MRE11 Homologue Protein/genetics , RNA, Guide, Kinetoplastida
16.
BMC Biol ; 17(1): 4, 2019 01 15.
Article En | MEDLINE | ID: mdl-30646909

BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.


Cholesterol/blood , Hypercholesterolemia/genetics , Liver/metabolism , Proprotein Convertase 9/genetics , Animals , Disease Models, Animal , Gene Editing , Genome , Humans , Hypercholesterolemia/metabolism , Mice , Mice, Transgenic
17.
BMC Biol ; 16(1): 150, 2018 12 28.
Article En | MEDLINE | ID: mdl-30593278

BACKGROUND: Base Editing is a precise genome editing method that uses a deaminase-Cas9 fusion protein to mutate cytidine to thymidine in target DNA in situ without the generation of a double-strand break. However, the efficient enrichment of genetically modified cells using this technique is limited by the ability to detect such events. RESULTS: We have developed a Base Editing FLuorescent Activity REporter (BE-FLARE), which allows for the enrichment of cells that have undergone editing of target loci based on a fluorescence shift from BFP to GFP. We used BE-FLARE to evaluate the editing efficiency of APOBEC3A and APOBEC3B family members as alternatives deaminase domains to the rat APOBEC1 domain used in base editor 3 (BE3). We identified human APOBEC3A and APOBEC3B as highly efficient cytidine deaminases for base editing applications with unique properties. CONCLUSIONS: Using BE-FLARE to report on the efficiency and precision of editing events, we outline workflows for the accelerated generation of genetically engineered cell models and the discovery of alternative base editors.


APOBEC-1 Deaminase/genetics , Cytidine Deaminase/genetics , Gene Editing/methods , Genetic Engineering/methods , Minor Histocompatibility Antigens/genetics , Proteins/genetics , Animals , Humans , Rats
18.
Cell Metab ; 28(6): 907-921.e7, 2018 12 04.
Article En | MEDLINE | ID: mdl-30174308

Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4-/- bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4-/- or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.


Adipose Tissue, Beige/metabolism , Bacterial Proteins/metabolism , Caloric Restriction , Fatty Liver/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract , Lipid A/metabolism , Adipose Tissue, Beige/cytology , Animals , Eosinophils/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism
19.
Nature ; 561(7723): 416-419, 2018 09.
Article En | MEDLINE | ID: mdl-30209390

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Editing/standards , Genome/genetics , Mutation , Substrate Specificity/genetics , Animals , CRISPR-Associated Proteins/genetics , Female , Humans , INDEL Mutation , Male , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Transgenes/genetics
20.
Kidney Int ; 94(6): 1099-1110, 2018 12.
Article En | MEDLINE | ID: mdl-30072040

Development of physiologically relevant cellular models with strong translatability to human pathophysiology is critical for identification and validation of novel therapeutic targets. Herein we describe a detailed protocol for generation of an advanced 3-dimensional kidney cellular model using induced pluripotent stem cells, where differentiation and maturation of kidney progenitors and podocytes can be monitored in live cells due to CRISPR/Cas9-mediated fluorescent tagging of kidney lineage markers (SIX2 and NPHS1). Utilizing these cell lines, we have refined the previously published procedures to generate a new, higher throughput protocol suitable for drug discovery. Using paraffin-embedded sectioning and whole-mount immunostaining, we demonstrated that organoids grown in suspension culture express key markers of kidney biology (WT1, ECAD, LTL, nephrin) and vasculature (CD31) within renal cortical structures with microvilli, tight junctions and podocyte foot processes visualized by electron microscopy. Additionally, the organoids resemble the adult kidney transcriptomics profile, thereby strengthening the translatability of our in vitro model. Thus, development of human nephron-like structures in vitro fills a major gap in our ability to assess the effect of potential treatment on key kidney structures, opening up a wide range of possibilities to improve clinical translation.


CRISPR-Cas Systems , Drug Discovery/methods , Gene Editing/methods , Induced Pluripotent Stem Cells/physiology , Kidney/physiology , Organoids/physiology , Podocytes/physiology , Biomarkers/metabolism , Cell Differentiation , Cell Line , Cell Lineage , Gene Expression Regulation , Genotype , High-Throughput Screening Assays , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Kidney/drug effects , Kidney/metabolism , Kidney/ultrastructure , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organoids/drug effects , Organoids/metabolism , Organoids/ultrastructure , Phenotype , Podocytes/drug effects , Podocytes/metabolism , Podocytes/ultrastructure , Time Factors , Transcriptome
...