Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Nat Aging ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313745

ABSTRACT

The emergence of epigenetic predictors was a pivotal moment in geroscience, propelling the measurement and concept of biological aging into a quantitative era; however, while current epigenetic clocks show strong predictive power, they are data-driven in nature and are not based on the underlying biological mechanisms driving methylation dynamics. We show that predictions of these clocks are susceptible to several confounding non-age-related phenomena that make interpretation of these estimates and associations difficult. To address these limitations, we developed a probabilistic model describing methylation transitions at the cellular level. Our approach reveals two measurable components, acceleration and bias, which directly reflect perturbations of the underlying cellular dynamics. Acceleration is the proportional increase in the speed of methylation transitions across CpG sites, whereas bias corresponds to global changes in methylation levels. Using data from 15,900 participants from the Generation Scotland study, we develop a robust inference framework and show that these are two distinct processes confounding current epigenetic predictors. Our results show improved associations of acceleration and bias with physiological traits known to impact healthy aging, such as smoking and alcohol consumption, respectively. Furthermore, a genome-wide association study of epigenetic age acceleration identified seven genomic loci.

2.
Clin Epigenetics ; 16(1): 124, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256775

ABSTRACT

BACKGROUND: Plasma growth differentiation factor 15 (GDF15) and N-terminal proB-type natriuretic peptide (NT-proBNP) are cardiovascular biomarkers that associate with a range of diseases. Epigenetic scores (EpiScores) for GDF15 and NT-proBNP may provide new routes for risk stratification. RESULTS: In the Generation Scotland cohort (N ≥ 16,963), GDF15 levels were associated with incident dementia, ischaemic stroke and type 2 diabetes, whereas NT-proBNP levels were associated with incident ischaemic heart disease, ischaemic stroke and type 2 diabetes (all PFDR < 0.05). Bayesian epigenome-wide association studies (EWAS) identified 12 and 4 DNA methylation (DNAm) CpG sites associated (Posterior Inclusion Probability [PIP] > 95%) with levels of GDF15 and NT-proBNP, respectively. EpiScores for GDF15 and NT-proBNP were trained in a subset of the population. The GDF15 EpiScore replicated protein associations with incident dementia, type 2 diabetes and ischaemic stroke in the Generation Scotland test set (hazard ratios (HR) range 1.36-1.41, PFDR < 0.05). The EpiScore for NT-proBNP replicated the protein association with type 2 diabetes, but failed to replicate an association with ischaemic stroke. EpiScores explained comparable variance in protein levels across both the Generation Scotland test set and the external LBC1936 test cohort (R2 range of 5.7-12.2%). In LBC1936, both EpiScores were associated with indicators of poorer brain health. Neither EpiScore was associated with incident dementia in the LBC1936 population. CONCLUSIONS: EpiScores for serum levels of GDF15 and Nt-proBNP associate with body and brain health traits. These EpiScores are provided as potential tools for disease risk stratification.


Subject(s)
Biomarkers , DNA Methylation , Diabetes Mellitus, Type 2 , Growth Differentiation Factor 15 , Natriuretic Peptide, Brain , Peptide Fragments , Humans , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/genetics , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/genetics , Peptide Fragments/blood , Peptide Fragments/genetics , Male , Female , Aged , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , DNA Methylation/genetics , Biomarkers/blood , Scotland , Dementia/blood , Dementia/genetics , Epigenesis, Genetic , Ischemic Stroke/blood , Ischemic Stroke/genetics , Bayes Theorem , Cohort Studies
3.
BMJ Open ; 14(9): e085365, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284691

ABSTRACT

INTRODUCTION: Preterm birth (PTB) is strongly associated with encephalopathy of prematurity (EoP) and neurocognitive impairment. The biological axes linking PTB with atypical brain development are uncertain. We aim to elucidate the roles of neuroendocrine stress activation and immune dysregulation in linking PTB with EoP. METHODS AND ANALYSIS: PRENCOG (PREterm birth as a determinant of Neurodevelopment and COGnition in children: mechanisms and causal evidence) is an exposure-based cohort study at the University of Edinburgh. Three hundred mother-infant dyads comprising 200 preterm births (gestational age, GA <32 weeks, exposed) and 100 term births (GA >37 weeks, non-exposed), will be recruited between January 2023 and December 2027. We will collect parental and infant medical, demographic, socioeconomic characteristics and biological data which include placental tissue, umbilical cord blood, maternal and infant hair, infant saliva, infant dried blood spots, faecal material, and structural and diffusion MRI. Infant biosamples will be collected between birth and 44 weeks GA.EoP will be characterised by MRI using morphometric similarity networks (MSNs), hierarchical complexity (HC) and magnetisation transfer saturation imaging (MTsat). We will conduct: first, multivariable regressions and statistical association assessments to test how PTB-associated risk factors (PTB-RFs) relate to MSNs, HC and or MTsat; second, structural equation modelling to investigate neuroendocrine stress activation and immune dysregulation as mediators of PTB-RFs on features of EoP. PTB-RF selection will be informed by the variables that predict real-world educational outcomes, ascertained by linking the UK National Neonatal Research Database with the National Pupil Database. ETHICS AND DISSEMINATION: A favourable ethical opinion has been given by the South East Scotland Research Ethics Committee 02 (23/SS/0067) and NHS Lothian Research and Development (2023/0150). Results will be reported to the Medical Research Council, in scientific media, via stakeholder partners and on a website in accessible language (https://www.ed.ac.uk/centre-reproductive-health/prencog).


Subject(s)
Cognition , Premature Birth , Humans , Female , Infant, Newborn , Cohort Studies , Pregnancy , United Kingdom , Risk Factors , Male , Infant , Child Development , Infant, Premature , Gestational Age , Neurodevelopmental Disorders/etiology , Magnetic Resonance Imaging , Research Design
4.
Bioinformatics ; 40(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-39177104

ABSTRACT

MOTIVATION: Heterogeneity in human diseases presents challenges in diagnosis and treatments due to the broad range of manifestations and symptoms. With the rapid development of labelled multi-omic data, integrative machine learning methods have achieved breakthroughs in treatments by redefining these diseases at a more granular level. These approaches often have limitations in scalability, oversimplification, and handling of missing data. RESULTS: In this study, we introduce Multi-Omic Graph Diagnosis (MOGDx), a flexible command line tool for the integration of multi-omic data to perform classification tasks for heterogeneous diseases. MOGDx has a network taxonomy. It fuses patient similarity networks, augments this integrated network with a reduced vector representation of genomic data and performs classification using a graph convolutional network. MOGDx was evaluated on three datasets from the cancer genome atlas for breast invasive carcinoma, kidney cancer, and low grade glioma. MOGDx demonstrated state-of-the-art performance and an ability to identify relevant multi-omic markers in each task. It integrated more genomic measures with greater patient coverage compared to other network integrative methods. Overall, MOGDx is a promising tool for integrating multi-omic data, classifying heterogeneous diseases, and aiding interpretation of genomic marker data. AVAILABILITY AND IMPLEMENTATION: MOGDx source code is available from https://github.com/biomedicalinformaticsgroup/MOGDx.


Subject(s)
Genomics , Humans , Genomics/methods , Software , Breast Neoplasms , Neoplasms , Kidney Neoplasms/genetics , Kidney Neoplasms/classification , Machine Learning , Computational Biology/methods , Glioma/genetics , Glioma/classification , Multiomics
5.
Nat Commun ; 15(1): 7346, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187491

ABSTRACT

Understanding how gene-environment interactions (GEIs) influence the circulating proteome could aid in biomarker discovery and validation. The presence of GEIs can be inferred from single nucleotide polymorphisms that associate with phenotypic variability - termed variance quantitative trait loci (vQTLs). Here, vQTL association studies are performed on plasma levels of 1463 proteins in 52,363 UK Biobank participants. A set of 677 independent vQTLs are identified across 568 proteins. They include 67 variants that lack conventional additive main effects on protein levels. Over 1100 GEIs are identified between 101 proteins and 153 environmental exposures. GEI analyses uncover possible mechanisms that explain why 13/67 vQTL-only sites lack corresponding main effects. Additional analyses also highlight how age, sex, epistatic interactions and statistical artefacts may underscore associations between genetic variation and variance heterogeneity. This study establishes the most comprehensive database yet of vQTLs and GEIs for the human proteome.


Subject(s)
Biological Specimen Banks , Blood Proteins , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Proteome , Quantitative Trait Loci , Humans , United Kingdom , Proteome/metabolism , Proteome/genetics , Female , Male , Blood Proteins/metabolism , Blood Proteins/genetics , Middle Aged , Aged , Adult , Biomarkers/blood , Genome-Wide Association Study , UK Biobank
6.
Nat Hum Behav ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210026

ABSTRACT

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.

7.
Brain Behav Immun ; 121: 244-256, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084542

ABSTRACT

BACKGROUND: Infections during pregnancy have been robustly associated with adverse mental and physical health outcomes in offspring, yet the underlying molecular pathways remain largely unknown. Here, we examined whether exposure to common infections in utero associates with DNA methylation (DNAm) patterns at birth and whether this in turn relates to offspring health outcomes in the general population. METHODS: Using data from 2,367 children from the Dutch population-based Generation R Study, we first performed an epigenome-wide association study to identify differentially methylated sites and regions at birth associated with prenatal infection exposure. We also examined the influence of infection timing by using self-reported cumulative infection scores for each trimester. Second, we sought to develop an aggregate methylation profile score (MPS) based on cord blood DNAm as an epigenetic proxy of prenatal infection exposure and tested whether this MPS prospectively associates with offspring health outcomes, including psychiatric symptoms, BMI, and asthma at ages 13-16 years. Third, we investigated whether prenatal infection exposure associates with offspring epigenetic age acceleration - a marker of biological aging. Across all analysis steps, we tested whether our findings replicate in 864 participants from an independent population-based cohort (ALSPAC, UK). RESULTS: We observed no differentially methylated sites or regions in cord blood in relation to prenatal infection exposure, after multiple testing correction. 33 DNAm sites showed suggestive associations (p < 5e10 - 5; of which one was also nominally associated in ALSPAC), indicating potential links to genes associated with immune, neurodevelopmental, and cardiovascular pathways. While the MPS of prenatal infections associated with maternal reports of infections in the internal hold out sample in the Generation R Study (R2incremental = 0.049), it did not replicate in ALSPAC (R2incremental = 0.001), and it did not prospectively associate with offspring health outcomes in either cohort. Moreover, we observed no association between prenatal exposure to infections and epigenetic age acceleration across cohorts and clocks. CONCLUSION: In contrast to prior studies, which reported DNAm differences in offspring exposed to severe infections in utero, we do not find evidence for associations between self-reported clinically evident common infections during pregnancy and DNAm or epigenetic aging in cord blood within the general pediatric population. Future studies are needed to establish whether associations exist but are too subtle to be statistically meaningful with present sample sizes, whether they replicate in a cohort with a more similar infection score as our discovery cohort, whether they occur in different tissues than cord blood, and whether other biological pathways may be more relevant for mediating the effect of prenatal common infection exposure on downstream offspring health outcomes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fetal Blood , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Infant, Newborn , Male , Prospective Studies , Fetal Blood/metabolism , Adolescent , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/epidemiology , Genome-Wide Association Study , Adult , Infections/genetics , Infections/epidemiology
8.
Clin Epigenetics ; 16(1): 84, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951914

ABSTRACT

BACKGROUND: Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins. RESULTS: In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10-3). These included EpiScores for chemokines, growth factors, proteins involved in neurogenesis and vascular development, cell membrane proteins and receptors, and other immune proteins. Three EpiScores were associated with SES, or the interaction between birth GA and SES: afamin, intercellular adhesion molecule 5, and hepatocyte growth factor-like protein (standardised estimates |0.06 to 0.13|, Bonferroni-adjusted p-value < 8.3 × 10-3). In a preterm subgroup (n = 217, median [range] GA 29.29 weeks [22.14 to 33.0 weeks]), SES-EpiScore associations did not remain statistically significant after adjustment for sepsis, bronchopulmonary dysplasia, necrotising enterocolitis, and histological chorioamnionitis. CONCLUSIONS: Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gestational Age , Saliva , Humans , Saliva/chemistry , Female , Infant, Newborn , Male , DNA Methylation/genetics , Premature Birth/genetics , Premature Birth/epidemiology , Pregnancy , Infant, Premature , Social Class , Adult , Inflammation/genetics
9.
Alzheimers Dement ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073684

ABSTRACT

INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.

10.
Nat Aging ; 4(7): 939-948, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987645

ABSTRACT

The circulating proteome offers insights into the biological pathways that underlie disease. Here, we test relationships between 1,468 Olink protein levels and the incidence of 23 age-related diseases and mortality in the UK Biobank (n = 47,600). We report 3,209 associations between 963 protein levels and 21 incident outcomes. Next, protein-based scores (ProteinScores) are developed using penalized Cox regression. When applied to test sets, six ProteinScores improve the area under the curve estimates for the 10-year onset of incident outcomes beyond age, sex and a comprehensive set of 24 lifestyle factors, clinically relevant biomarkers and physical measures. Furthermore, the ProteinScore for type 2 diabetes outperforms a polygenic risk score and HbA1c-a clinical marker used to monitor and diagnose type 2 diabetes. The performance of scores using metabolomic and proteomic features is also compared. These data characterize early proteomic contributions to major age-related diseases, demonstrating the value of the plasma proteome for risk stratification.


Subject(s)
Blood Proteins , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Blood Proteins/metabolism , Blood Proteins/genetics , Blood Proteins/analysis , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Incidence , Proteomics , UK Biobank , United Kingdom/epidemiology
11.
Crit Rev Clin Lab Sci ; : 1-24, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855982

ABSTRACT

This scoping review aimed to synthesize the analytical techniques used and methodological limitations encountered when undertaking secondary research using residual neonatal dried blood spot (DBS) samples. Studies that used residual neonatal DBS samples for secondary research (i.e. research not related to newborn screening for inherited genetic and metabolic disorders) were identified from six electronic databases: Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Medline, PubMed and Scopus. Inclusion was restricted to studies published from 1973 and written in or translated into English that reported the storage, extraction and testing of neonatal DBS samples. Sixty-seven studies were eligible for inclusion. Included studies were predominantly methodological in nature and measured various analytes, including nucleic acids, proteins, metabolites, environmental pollutants, markers of prenatal substance use and medications. Neonatal DBS samples were stored over a range of temperatures (ambient temperature, cold storage or frozen) and durations (two weeks to 40.5 years), both of which impacted the recovery of some analytes, particularly amino acids, antibodies and environmental pollutants. The size of DBS sample used and potential contamination were also cited as methodological limitations. Residual neonatal DBS samples retained by newborn screening programs are a promising resource for secondary research purposes, with many studies reporting the successful measurement of analytes even from neonatal DBS samples stored for long periods of time in suboptimal temperatures and conditions.

12.
medRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853823

ABSTRACT

Exploring the molecular correlates of metabolic health measures may identify the shared and unique biological processes and pathways that they track. Here, we performed epigenome-wide association studies (EWASs) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio (WHR), and blood-based measures of glucose, high-density lipoprotein (HDL) cholesterol, and total cholesterol. We considered blood-based DNA methylation (DNAm) from >750,000 CpG sites in over 17,000 volunteers from the Generation Scotland (GS) cohort. Linear regression analyses identified between 304 and 11,815 significant CpGs per trait at P<3.6×10-8, with 37 significant CpG sites across all six traits. Further, we performed a Bayesian EWAS that jointly models all CpGs simultaneously and conditionally on each other, as opposed to the marginal linear regression analyses. This identified between 3 and 27 CpGs with a posterior inclusion probability ≥ 0.95 across the six traits. Next, we used elastic net penalised regression to train epigenetic scores (EpiScores) of each trait in GS, which were then tested in the Lothian Birth Cohort 1936 (LBC1936; European ancestry) and Health for Life in Singapore (HELIOS; Indian-, Malay- and Chinese-ancestries). A maximum of 27.1% of the variance in BMI was explained by the BMI EpiScore in the subset of Malay-ancestry Singaporeans. Four metabolic EpiScores were associated with general cognitive function in LBC1936 in models adjusted for vascular risk factors (Standardised ßrange: 0.08 - 0.12, PFDR < 0.05). EpiScores of metabolic health are applicable across ancestries and can reflect differences in brain health.

13.
Nat Commun ; 15(1): 5007, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866767

ABSTRACT

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Male , Female , Multifactorial Inheritance/genetics , Incidence , Middle Aged , Adult , Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Risk Assessment/methods , Global Burden of Disease , Sex Factors , Age Factors
14.
BMJ Open ; 14(6): e084719, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908846

ABSTRACT

PURPOSE: Generation Scotland (GS) is a large family-based cohort study established as a longitudinal resource for research into the genetic, lifestyle and environmental determinants of physical and mental health. It comprises extensive genetic, sociodemographic and clinical data from volunteers in Scotland. PARTICIPANTS: A total of 24 084 adult participants, including 5501 families, were recruited between 2006 and 2011. Within the cohort, 59% (approximately 14 209) are women, with an average age at recruitment of 49 years. Participants completed a health questionnaire and attended an in-person clinic visit, where detailed baseline data were collected on lifestyle information, cognitive function, personality traits and mental and physical health. Genotype array data are available for 20 026 (83%) participants, and blood-based DNA methylation (DNAm) data for 18 869 (78%) participants. Linkage to routine National Health Service datasets has been possible for 93% (n=22 402) of the cohort, creating a longitudinal resource that includes primary care, hospital attendance, prescription and mortality records. Multimodal brain imaging is available in 1069 individuals. FINDINGS TO DATE: GS has been widely used by researchers across the world to study the genetic and environmental basis of common complex diseases. Over 350 peer-reviewed papers have been published using GS data, contributing to research areas such as ageing, cancer, cardiovascular disease and mental health. Recontact studies have built on the GS cohort to collect additional prospective data to study chronic pain, major depressive disorder and COVID-19. FUTURE PLANS: To create a larger, richer, longitudinal resource, 'Next Generation Scotland' launched in May 2022 to expand the existing cohort by a target of 20 000 additional volunteers, now including anyone aged 12+ years. New participants complete online consent and questionnaires and provide postal saliva samples, from which genotype and salivary DNAm array data will be generated. The latest cohort information and how to access data can be found on the GS website (www.generationscotland.org).


Subject(s)
Family Health , Humans , Scotland/epidemiology , Female , Male , Longitudinal Studies , Middle Aged , Adult , Life Style , Aged , Young Adult , COVID-19/epidemiology , DNA Methylation , Mental Health , Health Status , Adolescent , SARS-CoV-2
15.
Cell Genom ; 4(5): 100544, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38692281

ABSTRACT

Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.


Subject(s)
C-Reactive Protein , DNA Methylation , Epigenome , Inflammation , Humans , Inflammation/genetics , Inflammation/blood , Male , C-Reactive Protein/analysis , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Female , Middle Aged , Adult , Cohort Studies , Aged , Chronic Disease
16.
Nat Commun ; 15(1): 2713, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548728

ABSTRACT

DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.


Subject(s)
DNA Methylation , East Asian People , Humans , DNA Methylation/genetics , Quantitative Trait Loci/genetics , Gene Expression Regulation , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Genome-Wide Association Study
17.
Clin Epigenetics ; 16(1): 46, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528588

ABSTRACT

BACKGROUND: Epigenetic Scores (EpiScores) for blood protein levels have been associated with disease outcomes and measures of brain health, highlighting their potential usefulness as clinical biomarkers. They are typically derived via penalised regression, whereby a linear weighted sum of DNA methylation (DNAm) levels at CpG sites are predictive of protein levels. Here, we examine 84 previously published protein EpiScores as possible biomarkers of cross-sectional and longitudinal measures of general cognitive function and brain health, and incident dementia across three independent cohorts. RESULTS: Using 84 protein EpiScores as candidate biomarkers, associations with general cognitive function (both cross-sectionally and longitudinally) were tested in three independent cohorts: Generation Scotland (GS), and the Lothian Birth Cohorts of 1921 and 1936 (LBC1921 and LBC1936, respectively). A meta-analysis of general cognitive functioning results in all three cohorts identified 18 EpiScore associations (absolute meta-analytic standardised estimates ranged from 0.03 to 0.14, median of 0.04, PFDR < 0.05). Several associations were also observed between EpiScores and global brain volumetric measures in the LBC1936. An EpiScore for the S100A9 protein (a known Alzheimer disease biomarker) was associated with general cognitive functioning (meta-analytic standardised beta: - 0.06, P = 1.3 × 10-9), and with time-to-dementia in GS (Hazard ratio 1.24, 95% confidence interval 1.08-1.44, P = 0.003), but not in LBC1936 (Hazard ratio 1.11, P = 0.32). CONCLUSIONS: EpiScores might make a contribution to the risk profile of poor general cognitive function and global brain health, and risk of dementia, however these scores require replication in further studies.


Subject(s)
Alzheimer Disease , DNA Methylation , Humans , Cross-Sectional Studies , Brain , Cognition , Biomarkers , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Blood Proteins , Epigenesis, Genetic
18.
Nat Med ; 30(2): 360-372, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355974

ABSTRACT

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Subject(s)
Longevity , Research Design , Biomarkers , Consensus
19.
Blood ; 143(18): 1845-1855, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38320121

ABSTRACT

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Subject(s)
Cell Adhesion Molecules , Factor VIII , Kininogens , Lectins, C-Type , Receptors, Cell Surface , von Willebrand Factor , Humans , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Polymorphism, Single Nucleotide , Human Umbilical Vein Endothelial Cells/metabolism , Mendelian Randomization Analysis , Genome-Wide Association Study , Thrombosis/genetics , Thrombosis/blood , Genetic Association Studies , Male , Endothelial Cells/metabolism , Female
20.
Sci Transl Med ; 16(729): eadf4428, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198570

ABSTRACT

Population-based prospective studies, such as UK Biobank, are valuable for generating and testing hypotheses about the potential causes of human disease. We describe how UK Biobank's study design, data access policies, and approaches to statistical analysis can help to minimize error and improve the interpretability of research findings, with implications for other population-based prospective studies being established worldwide.


Subject(s)
Biological Specimen Banks , UK Biobank , Humans , Prospective Studies , Research Design , Data Analysis
SELECTION OF CITATIONS
SEARCH DETAIL