Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Blood Adv ; 8(7): 1687-1697, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38231087

ABSTRACT

ABSTRACT: Glycophorin A (GPA), a red blood cell (RBC) surface glycoprotein, can maintain peripheral blood leukocyte quiescence through interaction with a sialic acid-binding Ig-like lectin (Siglec-9). Under inflammatory conditions such as sickle cell disease (SCD), the GPA of RBCs undergo structural changes that affect this interaction. Peripheral blood samples from patients with SCD before and after RBC transfusions were probed for neutrophil and monocyte activation markers and analyzed by fluorescence-activated cell sorting (FACS). RBCs were purified and tested by FACS for Siglec-9 binding and GPA expression, and incubated with cultured endothelial cells to evaluate their effect on barrier function. Activated leukocytes from healthy subjects (HS) were coincubated with healthy RBCs (RBCH), GPA-altered RBCs, or GPA-overexpressing (OE) cells and analyzed using FACS. Monocyte CD63 and neutrophil CD66b from patients with SCD at baseline were increased 47% and 27%, respectively, as compared with HS (P = .0017, P = .0162). After transfusion, these markers were suppressed by 22% and 17% (P = .0084, P = .0633). GPA expression in RBCSCD was 38% higher (P = .0291) with decreased Siglec-9 binding compared with RBCH (0.0266). Monocyte CD63 and neutrophil CD66b were suppressed after incubation with RBCH and GPA-OE cells, but not with GPA-altered RBCs. Endothelial barrier dysfunction after lipopolysaccharide challenge was restored fully with exposure to RBCH, but not with RBCSCD, from patients in pain crisis, or with RBCH with altered GPA. Pretransfusion RBCSCD do not effectively maintain the quiescence of leukocytes and endothelium, but quiescence is restored through RBC transfusion, likely by reestablished GPA-Siglec-9 interactions.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Humans , Endothelial Cells/metabolism , Glycophorins/metabolism , Erythrocytes/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
2.
Transfusion ; 62(1): 217-226, 2022 01.
Article in English | MEDLINE | ID: mdl-34796962

ABSTRACT

BACKGROUND: Both M and N alleles encode antigens on Glycophorin A (GPA), a red blood cell (RBC) surface sialoglycoprotein. Interaction between RBC GPA and leukocyte surface lectins may downregulate their activation. The current study investigates if RBC autoantibodies against GPA, such as auto-anti-M/N, prime an activated phenotype in peripheral blood leukocytes. METHODS: Leukocyte activation was assessed in whole blood from patients with auto-anti-GPA (anti-M/N) and compared to those with allo-anti-M/N and healthy subjects. Control samples from healthy subjects with no antibodies incubated in vitro with either anti-GPA or anti-Rh were analyzed for neutrophil and monocyte surface activation marker expression, reactive oxygen species (ROS) content, and formation of aggregates with RBCs. Samples incubated with an IgG1 isotype antibody served as controls. RESULTS: Ex vivo, neutrophil CD66b and monocyte CD63 surface expression was increased in patients with auto-anti-M/N compared to those with allo anti-M/N (p = .1757; p = .0698) and to healthy subjects (p = .0186; p = .013). In vitro, neutrophil CD66b and monocyte CD63 surface expression was increased following incubation with anti-GPA compared to anti-Rh (p = .0003; p = .0328) and isotype control (p = .000; p = .0062). Intracellular ROS content increased in both neutrophils and monocytes incubated with anti-GPA compared to anti-Rh (p = .0012; p = .0693) and isotype control (p = .001; p = .0021). Percentage of neutrophil-RBC aggregates was decreased when incubated with anti-GPA compared to isotype control (p < .01). CONCLUSIONS: Neutrophils and monocytes in peripheral blood exposed to an antibody directed against GPA on RBC surfaces, such as M or N antigens, may be primed towards an activated phenotype.


Subject(s)
Blood Group Antigens , Glycophorins , Autoantibodies , Erythrocytes/metabolism , Humans , Leukocytes , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL