Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 215: 112-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336101

ABSTRACT

Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.


Subject(s)
Anemia, Sickle Cell , Benzamides , HMGB1 Protein , Lung Diseases , Lung Injury , Pyrroles , Vascular Diseases , Humans , Animals , Mice , Lung Injury/etiology , HMGB1 Protein/genetics , Endothelial Cells/metabolism , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Inflammation , Vascular Diseases/etiology
2.
Free Radic Biol Med ; 166: 73-89, 2021 04.
Article in English | MEDLINE | ID: mdl-33607217

ABSTRACT

Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Amides , Animals , Animals, Newborn , Humans , Hydrogen Peroxide , Infant, Newborn , Kelch-Like ECH-Associated Protein 1/metabolism , Lung/metabolism , NF-E2-Related Factor 2/metabolism , Rats
3.
Diab Vasc Dis Res ; 17(3): 1479164120907971, 2020.
Article in English | MEDLINE | ID: mdl-32223319

ABSTRACT

OBJECTIVE: Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia. METHODS: Leptin receptor-deficient (db/db) mice were subjected to hindlimb ischaemia. Ischaemic mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC) to inhibit myeloperoxidase. After ligating the femoral artery, effects of treatments were determined with respect to hindlimb blood flow, neutrophil infiltration, oxidative damage, and the capability of hindlimb extracellular matrix to support human endothelial cell proliferation and migration. RESULTS: KYC treatment improved hindlimb blood flow at 7 and 14 days in db/db mice; decreased the formation of advanced glycation end products, 4-hydroxynonenal, and 3-chlorotyrosine; reduced neutrophil infiltration into the hindlimbs; and improved the ability of hindlimb extracellular matrix from db/db mice to support endothelial cell proliferation and migration. CONCLUSION: These results demonstrate that inhibiting myeloperoxidase reduces oxidative stress in ischaemic hindlimbs of db/db mice, which improves blood flow and reduces neutrophil infiltration such that hindlimb extracellular matrix from db/db mice supports endothelial cell proliferation and migration.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Diabetes Mellitus/metabolism , Enzyme Inhibitors/pharmacology , Ischemia/drug therapy , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/drug effects , Neutrophils/drug effects , Oligopeptides/pharmacology , Peroxidase/antagonists & inhibitors , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus/genetics , Diabetes Mellitus/physiopathology , Disease Models, Animal , Extracellular Matrix/metabolism , Hindlimb , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/enzymology , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Neutrophils/enzymology , Oxidative Stress/drug effects , Peroxidase/metabolism , Receptors, Leptin/deficiency , Receptors, Leptin/genetics , Regional Blood Flow , Signal Transduction
4.
Prion ; 8(1): 143-53, 2014.
Article in English | MEDLINE | ID: mdl-24576946

ABSTRACT

Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ(-/-)) mice as compared with wild-type (PKCδ(+/+)) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.


Subject(s)
Prion Diseases/enzymology , Protein Kinase C-delta/metabolism , Animals , Cerebellum/enzymology , Cerebellum/pathology , Enzyme Activation , In Vitro Techniques , Mice , Mice, Inbred C57BL , Proteolysis
5.
Neurotoxicology ; 32(5): 554-62, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21871919

ABSTRACT

Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 µM for CAD5 infected cells vs. 211.6 µM for uninfected cells). Additionally, treatment with 300 µM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.


Subject(s)
Manganese/metabolism , Manganese/toxicity , Neurons/metabolism , Prion Diseases/metabolism , Prions/metabolism , Animals , Biological Transport/physiology , Cell Culture Techniques , Cells, Cultured , Neurons/drug effects
6.
Toxicol Sci ; 115(2): 535-46, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20176619

ABSTRACT

Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP(C)) into an abnormal form of scrapie prion (PrP(Sc)). The cellular mechanisms underlying the misfolding of PrP(C) are not well understood. Since cellular prion proteins harbor divalent metal-binding sites in the N-terminal region, we examined the effect of manganese on PrP(C) processing in in vitro models of prion disease. Exposure to manganese significantly increased PrP(C) levels both in cytosolic and in membrane-rich fractions in a time-dependent manner. Manganese-induced PrP(C) upregulation was independent of messenger RNA transcription or stability. Additionally, manganese treatment did not alter the PrP(C) degradation by either proteasomal or lysosomal pathways. Interestingly, pulse-chase analysis showed that the PrP(C) turnover rate was significantly altered with manganese treatment, indicating increased stability of PrP(C) with the metal exposure. Limited proteolysis studies with proteinase-K further supported that manganese increases the stability of PrP(C). Incubation of mouse brain slice cultures with manganese also resulted in increased prion protein levels and higher intracellular manganese accumulation. Furthermore, exposure of manganese to an infectious prion cell model, mouse Rocky Mountain Laboratory-infected CAD5 cells, significantly increased prion protein levels. Collectively, our results demonstrate for the first time that divalent metal manganese can alter the stability of prion proteins and suggest that manganese-induced stabilization of prion protein may play a role in prion protein misfolding and prion disease pathogenesis.


Subject(s)
Chlorides/pharmacology , Manganese Compounds/pharmacology , Neurons/drug effects , PrPC Proteins/metabolism , Prion Diseases/etiology , Prion Diseases/metabolism , Animals , Blotting, Western , Brain/drug effects , Brain/metabolism , Cell Fractionation , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Cytosol/drug effects , Cytosol/metabolism , Endopeptidase K , Mice , Muramidase/metabolism , Neurons/metabolism , Neurons/pathology , PrPC Proteins/analysis , Prion Diseases/pathology , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Up-Regulation/drug effects
7.
Free Radic Biol Med ; 45(11): 1530-41, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18835352

ABSTRACT

Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.


Subject(s)
Apoptosis/physiology , Endoplasmic Reticulum/physiology , Neurons/physiology , Oxidative Stress/physiology , PrPC Proteins/metabolism , Animals , Blotting, Western , Brefeldin A/pharmacology , Caspases/metabolism , Cell Line , DNA Fragmentation , Endoplasmic Reticulum/ultrastructure , Flow Cytometry , Immunohistochemistry , Immunoprecipitation , Mice , Mice, Knockout , Mutant Proteins , Neurons/cytology , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...