Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.288
Filter
1.
Plant Cell Environ ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39318061

ABSTRACT

To avoid reaching lethal temperatures during periods of heat stress, plants may acclimate either their biochemical thermal tolerance or leaf morphological and physiological characteristics to reduce leaf temperature (Tleaf). While plants from warmer environments may have a greater capacity to regulate Tleaf, the extent of intraspecific variation and contribution of provenance is relatively unexplored. We tested whether upland and lowland provenances of four tropical tree species grown in a common garden differed in their thermal safety margins by measuring leaf thermal traits, midday leaf-to-air temperature differences (∆Tleaf) and critical leaf temperatures defined by chlorophyll fluorescence (Tcrit). Provenance variation was species- and trait-specific. Higher ∆Tleaf and Tcrit were observed in the lowland provenance for Terminalia microcarpa, and in the upland provenance for Castanospermum australe, with no provenance effects in the other two species. Within-species covariation of Tcrit and ∆Tleaf led to a convergence of thermal safety margins across provenances. While future studies should expand the number of provenances and species investigated, our findings suggest that lowland and upland provenances may not differ substantially in their vulnerability to heat stress, as determined by thermal safety margins, despite differences in operating temperatures and Tcrit.

2.
J Am Chem Soc ; 146(37): 25614-25624, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39228133

ABSTRACT

The formation of crystalline calcium phosphate (CaP) has recently gained ample attention as it does not follow the classic nucleation-and-growth mechanism of solid formation. Instead, the precipitation mechanisms can involve numerous intermediates, including soluble prenucleation species. However, structural features, stability, and transformation of such solution-state precursors remain largely undisclosed. Herein, we report a detailed and comprehensive characterization of the sequential events involved in calcium phosphate crystallization starting from the very early prenucleation stage. We integrated an extensive set of time-resolved methods, including NMR, turbidimetry, SAXS, cryo-TEM, and calcium-potentiometry to show that CaP nucleation is initiated by the transformation of "branched" polymeric prenucleation assemblies into amorphous calcium phosphate spheres. Such a mineralization process starts with the spontaneous formation of so-called nanometric prenucleation clusters (PNCs) that later assemble into those branched polymeric assemblies without calcium ion uptake from the solution. Importantly, the branched macromolecular species are invisible to many techniques (NMR, turbidity, calcium-potentiometry) but can readily be evidenced by time-resolved SAXS. We find that these polymeric assemblies constitute the origin of amorphous calcium phosphate (ACP) precipitation through an unexpected process: spontaneous dissolution is followed by local densification of 100-200 nm wide domains leading to ACP spheres of similar size. Finally, we demonstrate that the timing of the successive events involved in the CaP mineralization pathway can be kinetically controlled by the Ca2+/Pi molar ratio, such that the lifetime of the soluble transient species can be increased up to hours when decreasing it.

3.
Drug Saf ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264483

ABSTRACT

BACKGROUND: Use of heart failure-exacerbating medications (HFEMs) may lead to preventable episodes of acute decompensated heart failure (HF). HFEMs use is common in patients with HF, and there may be opportunities to reduce their use from the emergency department (ED). METHODS: We performed an observational study on patients with HF presenting to EDs within a healthcare system between 1 January 2016 and 31 December 2020. Patients with chronic HF were identified using diagnostic codes within the electronic health record. The cohort was restricted to ambulatory (i.e., discharged to home) ED encounters. Medications, either ordered in the ED or prescribed at ED discharge, were extracted from the medication administration record and identified as potential HFEMs based on the 2016 American Heart Association Scientific Statement. Descriptive statistics were used to summarize the prevalence of HFEM use during ambulatory ED encounters. Exploratory analyses to identify correlates of HFEM use were performed. RESULTS: The study cohort included 23,907 ED encounters. ED administration or prescription of HFEMs occurred during 20% of ambulatory ED encounters. HFEM administration in the ED (17%) was more common than HFEM prescription at ED discharge (6%). The most common HFEMs administered in the ED included nonsteroidal anti-inflammatory drugs (11%) and albuterol (7%). CONCLUSION: HFEM use is common in patients with HF seeking ED care, occurring in roughly one-fifth of ambulatory ED encounters. There may be opportunities to optimize medication use among patients with HF in the ED.

4.
Eco Environ Health ; 3(3): 369-380, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39281069

ABSTRACT

Terrestrial invertebrates in urban ecosystems are extremely species-rich, have many important roles in material flow and energy circulation, and are host to many human pathogens that pose threats to human health. These invertebrates are widely distributed in urban areas, including both out- and in-door environments. Consequently, humans are frequently in contact with them, which provides many opportunities for them to pose human health risks. However, comprehensive knowledge on human pathogen transfer via invertebrates is lacking, with research to date primarily focused on dipterans (e.g., mosquitoes, flies). Here, we take a broad taxonomic approach and review terrestrial invertebrate hosts (incl. mosquitoes, flies, termites, cockroaches, mites, ticks, earthworms, collembola, fleas, snails, and beetles) of human pathogens, with a focus on transmission pathways. We also discuss how urbanization and global warming are likely to influence the communities of invertebrate hosts and have flow-on risks to human health. Finally, we identify current research gaps and provide perspectives on future directions.

5.
Virology ; 600: 110211, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39276669

ABSTRACT

Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.

6.
Aquat Toxicol ; 275: 107069, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39241467

ABSTRACT

The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.


Subject(s)
Aquatic Organisms , Nanostructures , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Nanostructures/toxicity , Animals , Aquatic Organisms/drug effects , Metals/toxicity , Ecotoxicology , Environmental Monitoring
7.
EJNMMI Res ; 14(1): 80, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231867

ABSTRACT

BACKGROUND: The orexin receptor (OXR) plays a role in drug addiction and is aberrantly expressed in colorectal tumors. Subtype-selective OXR PET ligands suitable for in vivo use have not yet been reported. This work reports the development of 18F-labeled OXR PET ligand candidates derived from the OXR antagonist suvorexant and the OX1R-selective antagonist JH112. RESULTS: Computational analysis predicted that fluorine substitution (1e) and introduction of the fluorobenzothiazole scaffold (1f) would be suitable for maintaining high OX1R affinity. After multi-step synthesis of 1a-1f, in vitro OXR binding studies confirmed the molecular dynamics calculations and revealed single-digit nanomolar OX1R affinities for 1a-f, ranging from 0.69 to 2.5 nM. The benzothiazole 1f showed high OX1R affinity (Ki = 0.69 nM), along with 77-fold subtype selectivity over OX2R. Cu-mediated 18F-fluorination of boroxine precursors allowed for a shortened reaction time of 5 min to provide the non-selective OXR ligand [18F]1c and its selective OX1R congener [18F]1f in activity yields of 14% and 22%, respectively, within a total synthesis time of 52-76 min. [18F]1c and [18F]1f were stable in plasma and serum in vitro, with logD7.4 of 2.28 ([18F]1c) and 2.37 ([18F]1f), and high plasma protein binding of 66% and 77%, respectively. Dynamic PET imaging in rats showed similar brain uptake of [18F]1c (0.17%ID/g) and [18F]1f (0.15%ID/g). However, preinjection of suvorexant did not significantly block [18F]1c or [18F]1f uptake in the rat brain. Pretreatment with cyclosporine A to study the role of P-glycoprotein (P-gp) in limiting brain accumulation moderately increased brain uptake of [18F]1c and [18F]1f. Accordingly, in vitro experiments demonstrated that the P-gp inhibitor zosuquidar only moderately inhibited polarized, basal to apical transport of 1c (p < 0.05) and had no effect on the transport of 1f, indicating that P-gp does not play a relevant role in brain accumulation of [18F]1c and [18F]1f in vivo. CONCLUSIONS: The in vitro and in vivo results of [18F]1c and [18F]1f provide a solid basis for further development of suitable OXR PET ligands for brain imaging.

8.
Arthrosc Tech ; 13(8): 103028, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39233801

ABSTRACT

The dorsal intercarpal ligament (DICL) is crucial for carpal stability and is frequently associated with injuries to other carpal ligaments, notably the scapholunate and lunotriquetral interosseous ligaments. Although isolated DICL injuries are uncommon, they can manifest as ligament avulsions, bony avulsions, or attenuations from chronic injury. Surgical repair of isolated DICL tears may be necessary when conservative management fails. We have previously described the first isolated DICL avulsion from the scaphoid dorsal ridge, suggesting an arthroscopic repair via the radiocarpal joint. This article details a repair technique through the midcarpal joint.

9.
Proc Biol Sci ; 291(2030): 20241595, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39226929

ABSTRACT

Ecoacoustics-or acoustic ecology-aids in monitoring elusive and protected species in several ecological contexts. For example, passive acoustic monitoring (PAM), which involves autonomous acoustic sensors, is widely used to detect various taxonomic groups in terrestrial and aquatic ecosystems, from birds and bats to fish and cetaceans. Here, we illustrate the potential of ecoacoustics to monitor soil biodiversity (specifically fauna)-a crucial endeavour given that 59% of species live in soil yet 75% of soils are affected by degradation. We describe the sources of sound in the soil (e.g. biological, geological and anthropogenic) and the ability of acoustic technology to detect and differentiate between these sounds, highlighting opportunities and current gaps in knowledge. We also propose a roadmap for the future development of optimized hardware, analytical pipelines and experimental approaches. Soil ecoacoustics is an emerging field with considerable potential to improve soil biodiversity monitoring and 'soil health' diagnostics. Indeed, early studies suggest soil ecoacoustics can be successfully applied in various ecosystems (e.g. grasslands, temperate, tropical and arid forests) and land uses (e.g. agriculture, viticulture, natural and restored ecosystems). Given the low cost, minimal intrusiveness, and effectiveness in supporting soil biodiversity assessments and biosecurity risks, we advocate for the advancement of soil ecoacoustics for future land management applications.


Subject(s)
Acoustics , Biodiversity , Soil , Soil/chemistry , Animals , Environmental Monitoring/methods , Ecosystem , Conservation of Natural Resources/methods
10.
Immunol Rev ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223989

ABSTRACT

The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."

12.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39203957

ABSTRACT

Viral, bacterial, fungal, and nematode infections cause significant agricultural losses, with limited treatment options, necessitating novel approaches to enhance plant defense systems and protection against pathogens. Virus-like nanoparticles (VLPs), extensively used in animal and human therapies (e.g., vaccines and immune enhancers), hold potential for novel agricultural solutions and advancing plant nanotechnology. This study employed various methodologies, including VLP production, confocal microscopy, and real-time qPCR. Our findings demonstrated the presence of 30 nm Qß-VLPs, fluorescently labeled, within the intercellular space of Nicotiana benthamiana leaves one hour post-infiltration. Furthermore, infiltration with Qß-VLPs led to an upregulation of key defense genes (NbPR1a, NbPR5, NbNPR, NbERF1, NbMYC2, and NbLRR2) in treated plants. Using RT-qPCR, a significant increase in the relative expression levels of defense genes was observed, with sustained high levels of NbERF1 and NbLRR2 even after 24 h. These findings suggest that Qß-VLPs effectively upregulate genes crucial for pathogen defense in N. benthamiana, initiating PAMP-triggered immunity and launching signaling cascades that enhance defense mechanisms. This innovative application of VLPs to activate plant defense programs advances plant nanobiotechnology, offering new agricultural solutions.

13.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39204000

ABSTRACT

Over the past few decades, dengue fever has emerged as a significant global health threat, affecting tropical and moderate climate regions. Current vaccines have practical limitations, there is a strong need for safer, more effective options. This study introduces novel vaccine candidates covering all four dengue virus (DENV) serotypes using virus-like particles (VLPs), a proven vaccine platform. The dengue virus envelope protein domain III (EDIII), the primary target of DENV-neutralizing antibodies, was either genetically fused or chemically coupled to bacteriophage-derived AP205-VLPs. To facilitate the incorporation of the large EDIII domain, AP205 monomers were dimerized, resulting in sterically optimized VLPs with 90 N- and C-termini. These vaccines induced high-affinity/avidity antibody titers in mice, and confirmed their protective potential by neutralizing different DENV serotypes in vitro. Administration of a tetravalent vaccine induced high neutralizing titers against all four serotypes without producing enhancing antibodies, at least not against DENV2. In conclusion, the vaccine candidates, especially when administered in a combined fashion, exhibit intriguing properties for potential use in the field, and exploring the possibility of conducting a preclinical challenge model to verify protection would be a logical next step.

14.
FEBS J ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206635

ABSTRACT

Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 µm, Tyr = 220.8 ± 54.5 µm, Phe = 234.7 ± 20.6 µm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.

15.
J Urban Health ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167318

ABSTRACT

Federal data indicate that assaults on transit workers resulting in fatalities or hospitalizations tripled between 2008 and 2022. The data indicated a peri-pandemic surge of assault-related fatalities and hospitalizations, but assaults with less dire outcomes were not recorded. In collaboration with the Transport Workers Union, Local 100, we conducted an online survey in late 2023 through early 2024 of New York City public-facing bus and subway workers that focused on their work experiences during the 2020-2023 period of the COVID-19 pandemic. Items for this analysis on victimization included measures of physical and sexual assault/harassment, verbal harassment/intimidation, theft, and demographic characteristics (e.g., sex, race, work division). We estimated separate modified Poisson models for each of the four outcomes, yielding prevalence ratios (PRs) and 95% confidence intervals (CIs). Potential interactions between variables with strong main effects in the adjusted model were further examined using product terms. Among 1297 respondents, 89.0% reported any victimization; respondents also reported physical assault (48.6%), sexual assault/harassment (6.3%), verbal harassment/intimidation (48.7%), and theft on the transit system (20.6%). Physical assault was significantly more common among women in the bus division compared to female subway workers, male bus workers, and male subway workers (adjusted PR (aPR) = 3.54; reference = male subway workers; Wald test p < .001). With the same reference group, sexual assault/harassment was more frequently reported among female subway workers (aPR = 5.15; Wald test, p < .001), but verbal assault/intimidation and experiencing theft were least common among women in the bus division (aPR = 0.22 and 0.13, respectively; Wald tests, p < .001). These data point to the need for greater attention to record and report on victimization against workers in both buses and subway.

16.
ACS Nano ; 18(34): 23301-23309, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39151088

ABSTRACT

Nucleic acid nanoparticles (NANPs) are increasingly used in preclinical investigations as delivery vectors. Tools that can characterize assembly and assess quality will accelerate their development and clinical translation. Standard techniques used to characterize NANPs, like gel electrophoresis, lack the resolution for precise characterization. Here, we introduce the use of charge detection mass spectrometry (CD-MS) to characterize these materials. Using this technique, we determined the mass of NANPs varying in size, shape, and molecular mass, NANPs varying in production quality due to formulations lacking component oligonucleotides, and NANPs functionalized with protein and nucleic acid-based secondary molecules. Based on these demonstrations, CD-MS is a promising tool to precisely characterize NANPs, enabling more precise assessments of the manufacturing and processing of these materials.


Subject(s)
Mass Spectrometry , Nanoparticles , Nucleic Acids , Nanoparticles/chemistry , Nucleic Acids/chemistry , Nucleic Acids/analysis , Particle Size , DNA/chemistry
17.
Front Psychol ; 15: 1425850, 2024.
Article in English | MEDLINE | ID: mdl-39205970

ABSTRACT

The convergence of researchers in the fields of flourishing, moral psychology, and social-emotional studies has reached a stage where developing a theory that connects emotional regulation and flourishing is meaningful. This theoretical investigation aims to uncover insights from the research of Magda B. Arnold, renowned for her theory of emotions, and lesser-known for her notion of the self-ideal, regarding the relationship between emotional regulation and flourishing. Our initial hypothesis posits that Arnold's concept of self-ideal provides a framework for understanding how to foster emotional regulation in individuals by directing it toward constructive life objectives. To achieve this, we explore the current state of emotional regulation and flourishing and the relationship between these concepts; we consider the interconnectedness of emotion and self-ideal within Arnold's theory and analyze its potential to serve as a foundation for building a theory relating flourishing and emotional regulation. We find in Arnold's theory substantial ideas about the relationship between emotional regulation, flourishing, and self-ideal, as well as emerging empirical research relating to these themes. We conclude that Arnold's research can serve as a catalyst for developing psychological intervention models that enhance emotional regulation and promote a flourishing life.

18.
Anal Chem ; 96(35): 14239-14247, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39167412

ABSTRACT

Nanotechnology has provided novel modalities for the delivery of therapeutic and diagnostic agents. In particular, nanoparticles (NPs) can be engineered at a low cost for drug loading and delivery. For example, silica NPs have proven useful as a controlled release platform for anti-inflammatory drugs. Despite the wide-ranging potential applications for NPs, robust characterization across all size ranges remains elusive. Electron microscopy (EM) is the conventional tool for measuring NP diameters. However, imitations in throughput and the inability to provide comprehensive information on physical properties, such as mass and density, without underlying assumptions, hinder a complete analysis. In addition, assessing sample heterogeneity, aggregation, or coalescence in solution by traditional EM analysis is not possible. Resistive-pulse sensing (RPS) provides a high throughput, solution-phase method for characterizing particle heterogeneity based on volume. Complementing these methods, charge detection mass spectrometry (CD-MS), a single particle technique, provides accurate mass information for heterogeneous samples including NPs. By combining EM, RPS and CD-MS, accurate volume, mass, and densities were obtained for silica NPs of various sizes. The results show that the density for 20 nm silica NPs is close to the density of fused silica (2.2 g/cm3). Larger silica NPs were found to have densities that were either smaller or larger, while also falling outside the range of densities usually found for silica colloids and NPs (1.9-2.3 g/cm3). Lower densities are attributed to pores (i.e., porous particles). For one sample, the mass distribution showed two components attributed to two populations of particles in the sample with different densities. The synergistic combination of EM, RPS, and CD-MS measurements outlined here for NP samples, allows much more extensive information to be obtained than from any of the techniques alone.

19.
Ecol Evol ; 14(8): e70185, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39145040

ABSTRACT

Soil microbiota underpin ecosystem functionality yet are rarely targeted during ecosystem restoration. Soil microbiota recovery following native plant revegetation can take years to decades, while the effectiveness of soil inoculation treatments on microbiomes remains poorly explored. Therefore, innovative restoration treatments that target soil microbiota represent an opportunity to accelerate restoration outcomes. Here, we introduce the concept of ecological phage therapy-the application of phage for the targeted reduction of the most abundant and dominant bacterial taxa present in degraded ecosystems. We propose that naturally occurring bacteriophages-viruses that infect bacteria-could help rapidly shift soil microbiota towards target communities. Bacteriophages sculpt the microbiome by lysis of specific bacteria, and if followed by the addition of reference soil microbiota, such treatments could facilitate rapid reshaping of soil microbiota. Here, we experimentally tested this concept in a pilot study. We collected five replicate pre-treatment degraded soil samples, then three replicate soil samples 48 hours after phage, bacteria, and control treatments. Bacterial 16S rDNA sequencing showed that phage-treated soils had reduced bacterial diversity; however, when we combined ecological phage therapy with reference soil inoculation, we did not see a shift in soil bacterial community composition from degraded soil towards a reference-like community. Our pilot study provides early evidence that ecological phage therapy could help accelerate the reshaping of soil microbiota with the ultimate aim of reducing timeframes for ecosystem recovery. We recommend the next steps for ecological phage therapy be (a) developing appropriate risk assessment and management frameworks, and (b) focussing research effort on its practical application to maximise its accessibility to restoration practitioners.

20.
Anal Chem ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140611

ABSTRACT

Charge detection mass spectrometry (CD-MS) allows mass distributions to be measured for heterogeneous samples that cannot be analyzed by conventional MS. With CD-MS, the m/z and charge are measured for individual ions using a detection cylinder embedded in an electrostatic linear ion trap (ELIT). Imprecision in both the m/z and charge measurements contribute to the mass resolution. However, if the charge can be measured with a precision of <0.2 e the charge state can be assigned with a low error rate and the mass resolving power only depends on the m/z resolution. Prior to this work, the best resolving power demonstrated experimentally for CD-MS was 700. Here we demonstrate a resolving power of >14,600, 20-times higher than the previous best. Trajectory simulations were used to optimize the geometry and electrostatic potentials of the ELIT. We found conditions where the energy dependence of the oscillation frequency becomes parabolic, and then operated with a nominal ion energy at the minimum of the parabola. The 14,600 resolving power was obtained with a beam collimator before the ELIT. With the collimator removed, the resolving power of the optimized ELIT is 7300, which is still an order of magnitude higher than the previous best. The resolving power was demonstrated by resolving the isotope distributions for peptides and proteins. High resolution CD-MS measurements were then used to resolve the glycans on a monoclonal antibody and applied to the analysis of hepatitis B virus capsids. The results indicate that procedures for adduct removal need to be improved for the full benefit of the higher resolving power to be realized for higher mass species. However, these results represent a key step toward using CD-MS to analyze very complex protein mixtures where charge states are not well resolved in the m/z spectrum because of congestion from numerous overlapping peaks.

SELECTION OF CITATIONS
SEARCH DETAIL