Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 65: 40-45, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30503806

ABSTRACT

Amitraz is an acaricide and insecticide widely used in agriculture and veterinary medicine. Although central nervous system (CNS) toxicity is one of major toxicities following oral ingestion of amitraz, the understanding of the cause of the toxicity is limited. This study evaluated the systemic and brain exposure of amitraz and its major metabolites, BTS27271, 2',4'-formoxylidide, and 2,4-dimethylaniline following administration of amitraz in male Sprague-Dawley rats. Significant metabolism of amitraz was observed following the intravenous and oral administration. Amitraz related metabolites were majority of the total exposure observed, especially following oral administration. BTS27271 had higher brain exposure than amitraz and its other metabolites, which was due to low plasma protein binding but high brain tissue binding of BTS27271. Since BTS27271 has similar or higher toxicity and α2-adrenoreceptor agonist potency than amitraz, its exposure in brain tissues may be the major cause of CNS toxicity of amitraz in animals and humans.


Subject(s)
Acaricides/pharmacokinetics , Brain/metabolism , Insecticides/pharmacokinetics , Toluidines/pharmacokinetics , Administration, Intravenous , Administration, Oral , Adrenergic alpha-2 Receptor Agonists/metabolism , Amidines/metabolism , Animals , Male , Rats, Sprague-Dawley
2.
Mol Ther ; 22(9): 1580-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24962162

ABSTRACT

We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule.


Subject(s)
Hepatocytes/metabolism , Hepatomegaly/chemically induced , Immunoglobulin Fc Fragments/metabolism , Macrophage Colony-Stimulating Factor/administration & dosage , Macrophage Colony-Stimulating Factor/adverse effects , Splenomegaly/chemically induced , Swine/immunology , Animals , CHO Cells , Cell Proliferation , Cricetulus , Female , Gene Expression Regulation/drug effects , HEK293 Cells , Half-Life , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Regenerative Medicine
3.
Biochem Biophys Res Commun ; 291(2): 313-20, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11846406

ABSTRACT

Described in this report is a successful cloning and characterization of a functionally active Drosophila sulfakinin receptor designated DSK-R1. When expressed in mammalian cells, DSK-R1 was activated by a sulfated, Met(7-->Leu(7)-substituted analog of drosulfakinin-1, FDDY(SO(3)H)GHLRF-NH(2) ([Leu(7)]-DSK-1S). The interaction of [Leu(7)]-DSK-1S with DSK-R1 led to a dose-dependent intracellular calcium increase with an EC(50) in the low nanomolar range. The observed Ca(2+) signal predominantly resulted from activation of pertussis toxin (PTX)-insensitive signaling pathways pointing most likely to G(q/11) involvement in coupling to the activated receptor. The unsulfated [Leu(7)]-DSK-1 was ca. 3000-fold less potent than its sulfated counterpart which stresses the importance of the sulfate moiety for the biological activity of drosulfakinin. The DSK-R1 was specific for the insect sulfakinin since two related vertebrate sulfated peptides, human CCK-8 and gastrin-II, were found inactive when tested at concentrations up to 10(-5) M. To our knowledge, the cloned DSK-R1 receptor is the first functionally active Drosophila sulfakinin receptor reported to date.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology , Receptors, Cholecystokinin , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Line , Chromatography, High Pressure Liquid , Cloning, Molecular , Dose-Response Relationship, Drug , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Humans , Molecular Sequence Data , Neuropeptides/chemical synthesis , Neuropeptides/chemistry , Neuropeptides/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Phylogeny , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL