Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172913, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697521

ABSTRACT

This study examines the influence of meteorological factors and air pollutants on the performance of automatic pollen monitoring devices, as part of the EUMETNET Autopollen COST ADOPT-intercomparison campaign held in Munich, Germany, during the 2021 pollen season. The campaign offered a unique opportunity to compare all automatic monitors available at the time, a Plair Rapid-E, a Hund-Wetzlar BAA500, an OPC Alphasense, a KH-3000 Yamatronics, three Swisens Polenos, a PollenSense APS, a FLIR IBAC2, a DMT WIBS-5, an Aerotape Sextant, to the average of four manual Hirst traps, under the same environmental conditions. The investigation aimed to elucidate how meteorological factors and air pollution impact particle capture and identification efficiency. The analysis showed coherent results for most devices regarding the correlation between environmental conditions and pollen concentrations. This reflects on one hand, a significant correlation between weather and airborne pollen concentration, and on the other hand the capability of devices to provide meaningful data under the conditions under which measurements were taken. However, correlation strength varied among devices, reflecting differences in design, algorithms, or sensors used. Additionally, it was observed that different algorithms applied to the same dataset resulted in different concentration outputs, highlighting the role of algorithm design in these systems (monitor + algorithm). Notably, no significant influence from air pollutants on the pollen concentrations was observed, suggesting that any potential difference in effect on the systems might require higher air pollution concentrations or more complex interactions. However, results from some monitors were affected to a minor degree by specific weather variables. Our findings suggest that the application of real-time devices in urban environments should focus on the associated algorithm that classifies pollen taxa. The impact of air pollution, although not to be excluded, is of secondary concern as long as the pollution levels are similar to a large European city like Munich.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Pollen , Environmental Monitoring/methods , Air Pollutants/analysis , Germany , Air Pollution/statistics & numerical data , Air Pollution/analysis , Weather
2.
Environ Res ; 200: 111391, 2021 09.
Article in English | MEDLINE | ID: mdl-34058184

ABSTRACT

Missing data is a common problem in scientific research. The availability of extensive environmental time series is usually laborious and difficult, and sometimes unexpected failures are not detected until samples are processed. Consequently, environmental databases frequently have some gaps with missing data in it. Applying an interpolation method before starting the data analysis can be a good solution in order to complete this missing information. Nevertheless, there are several different approaches whose accuracy should be considered and compared. In this study, data from 6 aerobiological sampling stations were used as an example of environmental data series to assess the accuracy of different interpolation methods. For that, observed daily pollen/spore concentration data series were randomly removed, interpolated by using different methods and then, compared with the observed data to measure the errors produced. Different periods, gap sizes, interpolation methods and bioaerosols were considered in order to check their influence in the interpolation accuracy. The moving mean interpolation method obtained the highest success rate as average. By using this method, a success rate of the 70% was obtained when the risk classes used in the alert systems of the pollen information platforms were taken into account. In general, errors were mostly greater when there were high oscillations in the concentrations of biotic particles during consecutive days. That is the reason why the pre-peak and peak periods showed the highest interpolation errors. The errors were also higher when gaps longer than 5 days were considered. So, for completing long periods of missing data, it would be advisable to test other methodological approaches. A new Variation Index based on the behaviour of the pollen/spore season (measurement of the variability of the concentrations every 2 consecutive days) was elaborated, which allows to estimate the potential error before the interpolation is applied.


Subject(s)
Pollen , Databases, Factual , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...