Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768161

ABSTRACT

Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.


Subject(s)
Parkinson Disease , Humans , Biomarkers/metabolism , Brain/metabolism , Dopamine/therapeutic use , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Prodromal Symptoms
2.
Lancet Neurol ; 20(9): 721-728, 2021 09.
Article in English | MEDLINE | ID: mdl-34418399

ABSTRACT

BACKGROUND: Non-immunogenic staphylokinase is modified recombinant staphylokinase with low immunogenicity, high thrombolytic activity, and selectivity to fibrin. We aimed to assess the safety and efficacy of a single intravenous bolus of non-immunogenic staphylokinase compared with alteplase in patients with acute ischaemic stroke within 4·5 h after symptom onset. METHODS: We did a randomised, open-label, multicentre, parallel-group, non-inferiority trial in 18 clinical sites in Russia. We included patients aged 18 years and older with a diagnosis of acute ischaemic stroke (up to 25 points on the National Institutes of Health Stroke Scale). The study drug had to be administered within 4·5 h after the onset of symptoms. Patients were randomly assigned to receive either non-immunogenic staphylokinase (10 mg) or alteplase (0·9 mg/kg, maximum 90 mg), both administered intravenously. The randomisation sequence was created by an independent biostatistician using computer-generated random numbers. 84 blocks (block size of four) of opaque sealed envelopes were numbered sequentially from 1 to 336 and were opened in numerical order. Patients were unaware of their assigned treatment and were assessed by the study investigators who were also unaware of the treatment assignment on all trial days. Emergency department staff, who administered the assigned drug and opened the envelopes, were not masked to treatment. The primary efficacy endpoint was a favourable outcome, defined as a modified Rankin scale (mRS) score of 0-1 on day 90. The margin of non-inferiority was established as 16% for the difference in mRS score of 0-1 on day 90. Non-inferiority was tested using Welch's t-test for the primary outcome only. Endpoints were analysed in the per-protocol population, which comprised all randomly assigned patients who completed treatment without any protocol violations; this population was identical to the intention-to-treat population. This trial is completed and registered at ClinicalTrials.gov, NCT03151993. FINDINGS: Of 385 patients recruited from March 18, 2017, to March 23, 2019, 336 (87%) were included in the trial. 168 (50%) patients were randomly assigned to receive non-immunogenic staphylokinase and 168 (50%) to receive alteplase. The median duration of follow-up was 89 days (IQR 89-89). 84 (50%) of 168 patients in the non-immunogenic staphylokinase group had a favourable outcome at day 90 compared with 68 (40%) of 168 patients in the alteplase group (odds ratio [OR] 1·47, 95% CI 0·93 to 2·32; p=0·10). The difference in the rate of favourable outcome at day 90 was 9·5% (95% CI -1·7 to 20·7) and the lower limit did not cross the margin of non-inferiority (pnon-inferiority <0·0001). Symptomatic intracranial haemorrhage occurred in five (3%) patients in the non-immunogenic staphylokinase group and in 13 (8%) patients in the alteplase group (p=0·087). On day 90, 17 (10%) patients in the non-immunogenic staphylokinase group and 24 (14%) patients in the alteplase group had died (p=0·32). 22 (13%) patients in the non-immunogenic staphylokinase group had serious adverse events, compared with 37 (22%) patients in the alteplase group (p=0·044). INTERPRETATION: Non-immunogenic staphylokinase was non-inferior to alteplase for patients with acute ischaemic stroke. Mortality, symptomatic intracranial haemorrhage, and serious adverse events did not differ significantly between groups. Future studies are needed to continue to assess the safety and efficacy of non-immunogenic staphylokinase in patients with acute ischaemic stroke within the 4·5 h time window, and to assess the drug in patients with acute ischaemic stroke outside this time window with reperfusion CT or magnetic resonance angiography followed by thrombectomy if necessary. FUNDING: The Russian Academy of Sciences.


Subject(s)
Fibrinolytic Agents/pharmacology , Ischemic Stroke/drug therapy , Metalloendopeptidases/pharmacology , Time-to-Treatment , Tissue Plasminogen Activator/pharmacology , Aged , Aged, 80 and over , Double-Blind Method , Female , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Humans , Male , Metalloendopeptidases/administration & dosage , Metalloendopeptidases/adverse effects , Metalloendopeptidases/immunology , Middle Aged , Outcome Assessment, Health Care , Recombinant Proteins , Russia , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/adverse effects
3.
J Exp Pharmacol ; 7: 17-28, 2015.
Article in English | MEDLINE | ID: mdl-27186142

ABSTRACT

Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood-brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...