Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Materials (Basel) ; 16(11)2023 Jun 05.
Article En | MEDLINE | ID: mdl-37297331

The present paper is dedicated to the quantitative determination of oxygen-containing impurities in the LiF-NaF-KF eutectic using electrochemical (cyclic and square-wave voltammetry) and reduction melting methods. The LiF-NaF-KF melt was analyzed before and after purifying electrolysis. The amount of oxygen-containing impurities removed from the salt during purification was determined. It was found that after electrolysis, the concentration of oxygen-containing impurities decreased by 7 times. The results obtained via electrochemical techniques and reduction melting were well-correlated, which made it possible to evaluate the quality of the LiF-NaF-KF F melt. To verify the analysis conditions, mechanical mixtures of LiF-NaF-KF containing Li2O were analyzed using the reduction melting method. The oxygen concentration in the mixtures varied from 0.672 to 2.554 wt. %. Based on the analysis results, the dependence approximated by the straight line was obtained. These data may be used to draw calibration curves and to further develop the procedure of oxygen analysis of fluoride melts.

2.
Front Oncol ; 13: 1121838, 2023.
Article En | MEDLINE | ID: mdl-37064146

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer - low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.

5.
Breast Cancer Res ; 25(1): 12, 2023 01 30.
Article En | MEDLINE | ID: mdl-36717842

BACKGROUND: Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS: A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS: We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS: Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.


Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Mastectomy , Chemotherapy, Adjuvant
6.
Sci Rep ; 12(1): 18117, 2022 10 27.
Article En | MEDLINE | ID: mdl-36302930

A THz nonstationary high-resolution spectrometer based on semiconductor superlattice multipliers is applied to investigate the dynamics of urine composition for cancer patients treated with chemotherapy. The molecular urine composition of healthy volunteers and cancer patients was compared and contrasted. We have found a set of nitriles that either appeared after chemotherapy or increased in content, which are expected as a result of bio-chemical damage to the liver. While no damage can be detected at this stage by existing clinical methods, the identified nitriles are candidates for further large-scale systematic testing towards markers for nephrotoxicity of chemotherapy at an early stage of the treatment, when conventional diagnostics cannot identify substantial organ damage. Comparing the metabolite concentration dynamics with side effects during chemotherapy might then help individuate patients prone to severe complications and correct the treatment. Our devices are game-changers for THz spectroscopy of liquids: they allow spanning four different frequency ranges for a general evaluation of most substances found in the liquid and selecting a spectral interval that bypasses the strong absorption lines from substances such as water and ammonia, which may otherwise mask the detection of the target metabolites.


Neoplasms , Nitriles , Humans , Spectrum Analysis , Water/chemistry , Gases , Neoplasms/drug therapy
7.
Neoplasia ; 26: 100778, 2022 04.
Article En | MEDLINE | ID: mdl-35220045

Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.


Oxygen Consumption , Humans , Longitudinal Studies
8.
Diagnostics (Basel) ; 11(9)2021 Sep 04.
Article En | MEDLINE | ID: mdl-34573958

Radiation therapy is one of the cardinal approaches in the treatment of malignant tumors of the pelvis. It leads to the development of radiation-induced complications in the normal tissues. Thus, the evaluation of radiation-induced changes in the extracellular matrix of the normal tissue is deemed urgent, since connective tissue stroma degradation plays a crucial role in the development of Grade 3-4 adverse effects (hemorrhage, necrosis, and fistula). Such adverse effects not only drastically reduce the patients' quality of life but can also become life-threatening. The aim of this study is to quantitatively analyze the bladder collagen state in patients who underwent radiation therapy for cervical and endometrial cancer and in patients with chronic bacterial cystitis and compare them to the normal bladder extracellular matrix. MATERIALS AND METHODS: One hundred and five patients with Grade 2-4 of radiation cystitis, 67 patients with bacterial chronic cystitis, and 20 volunteers without bladder pathology were enrolled. Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT). RESULTS: The main sign of the radiation-induced damage of collagen fibrils and fibers was the loss of the ordered "basket-weave" packing and a significant increase in the total area of ruptures deeper than 1 µm compared to the intact sample. The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis. The OCT signal brightness in cross-polarization images demonstrated a gradual decrease compared to the intact bladder depending on the grade of the adverse event. CONCLUSIONS: The observed correspondence between the extracellular matrix changes at the microscopic level and at the level of the general organ architectonics allows for the consideration of CP OCT as a method of "optical biopsy" in the grading of radiation-induced collagen damage.

9.
Theranostics ; 11(16): 8057-8075, 2021.
Article En | MEDLINE | ID: mdl-34335980

Over the last few years, immunotherapy, in particular, immune checkpoint inhibitor therapy, has revolutionized the treatment of several types of cancer. At the same time, the uptake in clinical oncology has been slow owing to the high cost of treatment, associated toxicity profiles and variability of the response to treatment between patients. In response, personalized approaches based on predictive biomarkers have emerged as new tools for patient stratification to achieve effective immunotherapy. Recently, the enumeration and molecular analysis of circulating tumor cells (CTCs) have been highlighted as prognostic biomarkers for the management of cancer patients during chemotherapy and for targeted therapy in a personalized manner. The expression of immune checkpoints on CTCs has been reported in a number of solid tumor types and has provided new insight into cancer immunotherapy management. In this review, we discuss recent advances in the identification of immune checkpoints using CTCs and shed light on the potential applications of CTCs towards the identification of predictive biomarkers for immunotherapy.


Immunotherapy/methods , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/metabolism , Biomarkers, Pharmacological/analysis , Biomarkers, Tumor/metabolism , Humans , Immunologic Factors , Neoplasms/immunology , Neoplasms/therapy , Precision Medicine/methods , Prognosis
10.
J Photochem Photobiol B ; 209: 111936, 2020 Aug.
Article En | MEDLINE | ID: mdl-32590286

The aim of the work was studying the effects of photobiomodulation of a red spectrum in doses of less than 1 J/cm2 in combination with gamma-irradiation to Hela Kyoto cells. Tumor cells were irradiated with 640 nm LED at different energy densities before and after to gamma-irradiation. Cells viability was determined 24 h after exposure for each gamma-irradiation dose and each PBM mode. There was a statistically significant decrease in a number of viable tumor cells for the samples that were exposed to low-intensity red light prior to gamma-irradiation and a statistically significant increase in a number of viable tumor cells for the samples that were exposed to low-intensity red light after gamma-irradiation. An increase in the number of viable tumor cells exposed to PBM after gamma irradiation correlates with a decrease in the number of cells with a depolarized mitochondrial membrane. The results of a current study need to take into consideration at further studies of PBM effects on tumor cells in vitro as far as clinical studies and clinical application of PBM during radiation therapy.


Low-Level Light Therapy/methods , Radiation, Ionizing , HeLa Cells , Humans , Membrane Potential, Mitochondrial/radiation effects
11.
J Biomed Opt ; 23(9): 1-8, 2018 08.
Article En | MEDLINE | ID: mdl-30136470

The objective of the study is the quantitative analysis of the dose-time dependences of changes occurring in collagen of bladder and rectum after gamma-irradiation using optical methods [nonlinear microscopy in a second harmonic generation (SHG) detection regime and cross-polarization optical coherence tomography (CP OCT)]. For quantitative assessment of the collagen structure, regions of interest on the SHG-images of two-dimensional (2-D) distribution of SHG signal intensity of collagen were chosen in the submucosa. The mean SHG signal intensity and its standard deviation were calculated by ImageJ 1.39p (NIH). For quantitative analysis of CP OCT data, an integral depolarization factor (IDF) was calculated. Quantitative calculation of the SHG signal intensity and the IDF can provide additional information about the processes of the collagen radiation-induced degradation and subsequent remodeling. High positive correlation between the mean SHG signal intensity and the mean IDF of bladder and rectum demonstrates that CP OCT can be used as an "optical biopsy" in the grading of collagen radiation damage.


Collagen/chemistry , Radiation Injuries, Experimental , Rectum , Tomography, Optical Coherence/methods , Urinary Bladder , Animals , Microscopy/methods , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/pathology , Rats , Rectum/chemistry , Rectum/diagnostic imaging , Rectum/pathology , Urinary Bladder/chemistry , Urinary Bladder/diagnostic imaging , Urinary Bladder/pathology
12.
J Biomed Opt ; 23(9): 1-11, 2018 05.
Article En | MEDLINE | ID: mdl-29766686

The ability for noninvasive visualization of functional changes of a tumor's oxygenation and circulatory system offers new advantages for prognosis and monitoring of the treatment efficacy. The results of breast cancer oxygen state study under chemotherapy action obtained by diffuse optical spectroscopy (DOS) in combination with Doppler ultrasonic imaging are presented. Complex use of optical and ultrasound methods gives complementary information about the size of the tumor node, peculiarities of its vascular bed, rate of its blood flow as well as oxygenation, and provide a picture of the tumor response to treatment. Comparison with tumor pathologic response allowed to identify differences in the changes of these parameters depending on the degree of pathological tumor response to chemotherapy. It was demonstrated that fourth and fifth degrees of therapeutic pathomorphism may be predicted by the increase of oxygen saturation level after the first cycle of chemotherapy. If the reduction or absence of the oxygen saturation dynamics is observed, first or second degree of pathological tumor response can be expected. Additional ultrasound investigation of the tumors may be useful for observation of the dynamics of tumor blood flow thereby for understanding the reasons of induced chemotherapy oxygenation changes. The proposed approach based on DOS and ultrasonography may be applied for monitoring of breast tumors under therapy and prediction of their sensitivity.


Breast Neoplasms , Neoadjuvant Therapy , Optical Imaging/methods , Adult , Breast/diagnostic imaging , Breast/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Female , Humans , Lymph Nodes/pathology , Mammography , Middle Aged , Oxygen/metabolism , Ultrasonography, Mammary
13.
Microsc Microanal ; 24(1): 38-48, 2018 02.
Article En | MEDLINE | ID: mdl-29485022

Radiation therapy, widely used in the treatment of a variety of malignancies in the pelvic area, is associated with inevitable damage to the surrounding healthy tissues. We have applied atomic force microscopy (AFM) to track the early damaging effects of ionizing radiation on the collagen structures in the experimental animals' bladder and rectum. The first signs of the low-dose radiation (2 Gy) effect were detected by AFM as early as 1 week postirradiation. The observed changes were consistent with initial radiation destruction of the protein matrix. The alterations in the collagen fibers' packing 1 month postirradiation were indicative of the onset of fibrotic processes. The destructive effect of higher radiation doses was probed 1 day posttreatment. The severity of the radiation damage was proportional to the dose, from relatively minor changes in the collagen packing at 8 Gy to the growing collagen matrix destruction at higher doses and complete three-dimensional collagen network restructuring towards fibrotic-type architecture at the dose of 22 Gy. The AFM study appeared superior to the optical microscopy-based studies in its sensitivity to early radiation damage of tissues, providing valuable additional information on the onset and development of the collagen matrix destruction and remodeling.

14.
Int J Mol Sci ; 18(12)2017 Nov 28.
Article En | MEDLINE | ID: mdl-29182594

The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.


Cobalt/chemistry , Porphyrins/chemistry , Animals , Boron/chemistry , Boron Neutron Capture Therapy , Carcinoma/therapy , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Photochemotherapy/methods , Photosensitizing Agents
15.
Int J Radiat Biol ; 91(3): 240-7, 2015 Mar.
Article En | MEDLINE | ID: mdl-25300691

PURPOSE: To evaluate the dose-time dependences of structural changes occurring in collagen within 24 hours to three months after gamma-irradiation at doses from 2-40 Gy in vivo. MATERIALS AND METHODS: Rat's tail tendon was chosen as in vivo model, with its highly ordered collagen structure allowing the changes to be interpreted unambiguously. Macromolecular level (I) was investigated by differential scanning calorimetry (DSC); fibers and bundles level (II) by laser scanning microscopy (LSM), and bulk tissue microstructural level (III) by cross-polarization optical coherence tomography (CP-OCT). RESULTS: For (I), the formation of molecular cross-links and breaks appeared to be a principal mechanism of collagen remodeling, with the cross-links number dependent on radiation dose. Changes on level (II) involved primary, secondary and tertiary bundles splitting in a day and a week after irradiation. Bulk collagen microstructure (III) demonstrated early widening of the interference fringes on CP-OCT images observed to occur in the tendon as result of this splitting. At all three levels, the observed collagen changes demonstrated complete remodeling within ∼ a month following irradiation. CONCLUSION: The time course and dose dependencies of the observed collagen changes at different levels of its hierarchy further contribute to elucidating the role of connective tissue in the radiotherapy process.


Collagen/chemistry , Collagen/radiation effects , Gamma Rays/adverse effects , Animals , Calorimetry, Differential Scanning , Collagen/metabolism , Connective Tissue/chemistry , Connective Tissue/injuries , Connective Tissue/radiation effects , Dose-Response Relationship, Radiation , Male , Microscopy, Confocal , Multiprotein Complexes/chemistry , Multiprotein Complexes/radiation effects , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Rats , Tendons/chemistry , Tendons/pathology , Tendons/radiation effects , Tomography, Optical Coherence
16.
J Biophotonics ; 3(12): 743-51, 2010 Dec.
Article En | MEDLINE | ID: mdl-20715133

The capabilities of diffuse optical spectroscopy for noninvasive assessing of oxygen status in experimental tumors have been demonstrated. Specific features of the distribution of total hemoglobin, oxygenated hemoglobin, deoxygenated hemoglobin, and blood-oxygen saturation were shown on two tumor models having different histological structure and functional characteristics. The results obtained by the optical technique were verified by immunohistochemical study of tissue samples marked with exogenous marker of hypoxia--pimonidazole.


Biomarkers, Tumor/analysis , Disease Models, Animal , Hypoxia/metabolism , Immunohistochemistry/methods , Medical Oncology/methods , Spectrum Analysis/methods , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Diffusion , Female , Hemoglobins/metabolism , Hypoxia/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Male , Nitroimidazoles , Optical Devices , Oxygen/metabolism , Radiation-Sensitizing Agents , Rats , Spectrum Analysis/instrumentation
...