Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 19(11): 4787-4804, 2023 11.
Article in English | MEDLINE | ID: mdl-37014937

ABSTRACT

INTRODUCTION: Hippocampal local and network dysfunction is the hallmark of Alzheimer's disease (AD). METHODS: We characterized the spatial patterns of hippocampus differentiation based on brain co-metabolism in healthy elderly participants and demonstrated their relevance to study local metabolic changes and associated dysfunction in pathological aging. RESULTS: The hippocampus can be differentiated into anterior/posterior and dorsal cornu ammonis (CA)/ventral (subiculum) subregions. While anterior/posterior CA show co-metabolism with different regions of the subcortical limbic networks, the anterior/posterior subiculum are parts of cortical networks supporting object-centered memory and higher cognitive demands, respectively. Both networks show relationships with the spatial patterns of gene expression pertaining to cell energy metabolism and AD's process. Finally, while local metabolism is generally lower in posterior regions, the anterior-posterior imbalance is maximal in late mild cognitive impairment with the anterior subiculum being relatively preserved. DISCUSSION: Future studies should consider bidimensional hippocampal differentiation and in particular the posterior subicular region to better understand pathological aging.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Magnetic Resonance Imaging/methods , Hippocampus/pathology , Aging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology
2.
Nat Commun ; 13(1): 2341, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534454

ABSTRACT

Brain structure scaffolds intrinsic function, supporting cognition and ultimately behavioral flexibility. However, it remains unclear how a static, genetically controlled architecture supports flexible cognition and behavior. Here, we synthesize genetic, phylogenetic and cognitive analyses to understand how the macroscale organization of structure-function coupling across the cortex can inform its role in cognition. In humans, structure-function coupling was highest in regions of unimodal cortex and lowest in transmodal cortex, a pattern that was mirrored by a reduced alignment with heritable connectivity profiles. Structure-function uncoupling in macaques had a similar spatial distribution, but we observed an increased coupling between structure and function in association cortices relative to humans. Meta-analysis suggested regions with the least genetic control (low heritable correspondence and different across primates) are linked to social-cognition and autobiographical memory. Our findings suggest that genetic and evolutionary uncoupling of structure and function in different transmodal systems may support the emergence of complex forms of cognition.


Subject(s)
Cerebral Cortex , Cognition , Animals , Brain , Brain Mapping , Humans , Magnetic Resonance Imaging , Phylogeny
3.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32978162

ABSTRACT

The topology of the cerebral cortex has been proposed to provide an important source of constraint for the organization of cognition. In a sample of twins (n = 1113), we determined structural covariance of thickness to be organized along both a posterior-to-anterior and an inferior-to-superior axis. Both organizational axes were present when investigating the genetic correlation of cortical thickness, suggesting a strong genetic component in humans, and had a comparable organization in macaques, demonstrating they are phylogenetically conserved in primates. In both species, the inferior-superior dimension of cortical organization aligned with the predictions of dual-origin theory, and in humans, we found that the posterior-to-anterior axis related to a functional topography describing a continuum of functions from basic processes involved in perception and action to more abstract features of human cognition. Together, our study provides important insights into how functional and evolutionary patterns converge at the level of macroscale cortical structural organization.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Cerebral Cortex/diagnostic imaging , Cognition , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...