Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Sci Data ; 11(1): 524, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778016

ABSTRACT

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase. In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards. By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.


Subject(s)
Data Management , Metadata , Biomedical Research , Data Management/standards , Metadata/standards , Software
2.
Elife ; 132024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526524

ABSTRACT

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Subject(s)
Hematopoiesis , Macrophages , Animals , Mice , Hematopoiesis/genetics , Hematopoietic Stem Cells , Cell Differentiation , Erythropoiesis , Liver , Stem Cell Niche/genetics
3.
Mol Biol Rep ; 51(1): 343, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400845

ABSTRACT

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure. Furthermore, salt storage in the skin has been linked to the onset of pro-inflammatory effector functions of macrophages in pathogen defence. However, there is only little known about the mechanisms which are involved in changing macrophage function to salt exposure. Here, we characterize the response of macrophages to excess salt both in vitro and in vivo. Our results validate and strengthen the notion that macrophages exhibit chemotactic migration in response to salt gradients in vitro. Furthermore, we demonstrate a reduction in phagocytosis and efferocytosis following acute salt challenge in vitro. While acute exposure to a high-salt diet in vivo has a less pronounced impact on macrophage core functions such as phagocytosis, our data indicate that prolonged salt challenge may exert a distinct effect on the function of macrophages. These findings suggest a potential role for excessive salt sensing by macrophages in the manifestation of diseases related to high-salt diets and explicitly highlight the need for in vivo work to decipher the physiologically relevant impact of excess salt on tissue and cell function.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Humans , Macrophages , Sodium Chloride , Phagocytosis
4.
Methods Mol Biol ; 2713: C1, 2024.
Article in English | MEDLINE | ID: mdl-38129346
5.
Methods Mol Biol ; 2713: 129-137, 2024.
Article in English | MEDLINE | ID: mdl-37639119

ABSTRACT

To better understand the distinct functions of yolk-sac-derived tissue-resident macrophages (TRMs) and bone-marrow-derived macrophages in homeostasis and disease, it is important to trace the ontogeny of these cells. The majority of TRMs originate from erythro-myeloid progenitors (EMPs). EMPs develop into pre-macrophages (pMacs), which can be detected starting at embryonic developmental day (E)9.0, and which give rise to all TRM during early development. pMacs start expressing the gene Cx3cr1, allowing us to genetically target the early yolk-sac wave of pMacs and their progeny. Here, we describe the protocol for the identification of yolk sac-derived TRMs utilizing in utero labelling of the inducible fate mapping Cx3cr1CreERT; Rosa26LSL-eYFP mouse model.


Subject(s)
Macrophages , Yolk Sac , Animals , Mice , Disease Models, Animal , Embryonic Development , Erythromycin
6.
Methods Mol Biol ; 2713: 139-148, 2024.
Article in English | MEDLINE | ID: mdl-37639120

ABSTRACT

Macrophages are cells of the innate immune system, which contribute to the maintenance of tissue homeostasis and form the first line of defense against pathogens. Tissue-resident macrophages that originate from erythro-myeloid-progenitors in the yolk sac colonize the organs early during development and self-maintain in most organs throughout adulthood. Under homeostatic and pathological conditions, circulating monocytes infiltrate the tissue, where they differentiate into macrophages. However, particularly upon inflammation, phenotyping of these distinct macrophage populations using surface markers or antibody stainings is insufficient as their phenotypes converge, at least transiently. A well-established method for the developmental origin of different cell types is the use of in vivo fate-mapping models, where a fluorescent reporter will be expressed under the control of a cell type-specific promoter. Here, we describe the Cxcr4CreERT2; Rosa26LSL-tdTomato mouse fate-mapping model, which labels hematopoietic stem cells and, thus, also monocytes and monocyte-derived macrophages while most tissue-resident macrophages are not targeted.


Subject(s)
Macrophages , Monocytes , Animals , Mice , Antibodies , Coloring Agents , Disease Models, Animal , Hematopoietic Stem Cells
7.
Trends Immunol ; 44(11): 865-867, 2023 11.
Article in English | MEDLINE | ID: mdl-37833121

ABSTRACT

Yolk sac-derived macrophages have been described to promote organogenesis and tissue function in animal models, but the relevance of these studies for humans has been debated. Wang et al. reveal that human macrophage development follows similar developmental trajectories with functionally distinct macrophage populations across tissues as observed in mice.


Subject(s)
Macrophages , Organogenesis , Humans , Animals , Mice
8.
EMBO J ; 42(21): e113891, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37743763

ABSTRACT

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Subject(s)
Cilia , Organelles , Cilia/metabolism , Cell Differentiation
9.
Eur J Immunol ; 53(10): e2250233, 2023 10.
Article in English | MEDLINE | ID: mdl-37467166

ABSTRACT

Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.


Subject(s)
Ischemic Stroke , Stroke , Animals , Monocytes , Ischemic Stroke/complications , Macrophages , Stroke/etiology , Stroke/therapy , Microglia
10.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36976179

ABSTRACT

Not only macrophages, but also neutrophils, are a main target of clodronate. In this issue of JEM, Culemann et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20220525) demonstrate that anti-inflammatory effects of clodronate liposomes are driven via stunning of polymorphonuclear neutrophils and not solely through depletion of macrophages.


Subject(s)
Clodronic Acid , Macrophages , Clodronic Acid/pharmacology , Liposomes/pharmacology , Neutrophils
11.
Nat Rev Immunol ; 23(9): 563-579, 2023 09.
Article in English | MEDLINE | ID: mdl-36922638

ABSTRACT

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.


Subject(s)
Macrophages , Phagocytosis , Humans , Signal Transduction , Biology
12.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36001550

ABSTRACT

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Subject(s)
Mitral Valve Prolapse , Mitral Valve , Adult , Humans , Rats , Animals , Infant , Mitral Valve/metabolism , Filamins/genetics , Filamins/metabolism , Transcriptome , X-Ray Microtomography , Mitral Valve Prolapse/pathology , Phenotype
13.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36214847

ABSTRACT

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.


Subject(s)
Centrosome , Dendritic Cells , Cell Cycle Checkpoints , Cell Movement , Centrosome/metabolism , Chemotaxis , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Microtubule-Organizing Center , Mitosis , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/metabolism
14.
Mol Oncol ; 16(17): 3107-3127, 2022 09.
Article in English | MEDLINE | ID: mdl-35811571

ABSTRACT

The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Secretome , Transcriptome , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Fibronectins/metabolism , Humans , Neoplasm Invasiveness , Neoplasms, Germ Cell and Embryonal/drug therapy , Transcriptome/genetics , Tumor Microenvironment
15.
Front Neurol ; 13: 884231, 2022.
Article in English | MEDLINE | ID: mdl-35645986

ABSTRACT

Objective: Recent studies have demonstrated emerging evidence of the role of inflammation in the growth and recurrence of chronic subdural hematoma (cSDH). Red blood cell distribution width to platelet count ratio (RPR) is a novel biomarker for inflammation in cancer, cardiac, and inflammatory diseases. The present retrospective study investigated the impact of RPR on recurrence after burr hole surgery for cSDH in 297 patients. Methods: The optimal cut-off value for RPR was defined as ≥0.0568 according to the receiver operating characteristic curve (AUC:0.64, 95%CI:0.55-0.72, p = 0.007). The study cohort was dichotomized into low (n = 157) and high (n = 140) RPR groups. Results: Significant differences between the groups were identified regarding American Society of Anesthesiologists (ASA) classification and frequency of anticoagulant intake. Demographics, comorbidities, size, morphology, and mass effect of cSDH were homogeneously distributed among the RPR groups. Multivariable binary logistic regression analysis considering location, midline-shift, septation, RPR, anticoagulant intake, sex, and ASA classification revealed that an increased baseline RPR (≥0.0568, OR: 3.1, 95%CI: 1.4-6.8, p = 0.004), and preoperative midline-shift (≥5 mm, OR: 2.7, 95%CI: 1.3-6.0, p = 0.01) are independent predictors of recurrent cSDH. Conclusion: The present findings suggest RPR as a novel inflammatory biomarker enabling risk stratification of recurrence after burr hole surgery for cSDH and might facilitate tailored medical decision making.

16.
Front Immunol ; 13: 747714, 2022.
Article in English | MEDLINE | ID: mdl-35280999

ABSTRACT

Background: Aortic stenosis (AS) is the most common valve disorder characterized by fibro-calcific remodeling of leaflets. Recent evidence indicated that there is a sex-related difference in AS development and progression. Fibrotic remodeling is peculiar in women's aortic valves, while men's leaflets are more calcified. Our study aimed to assess aortic valve fibrosis (AVF) in a severe AS cohort using non-invasive diagnostic tools and determine whether sex-specific pathological pathways and cell types are associated with severe AS. Materials and Methods: We have included 28 men and 28 women matched for age with severe AS who underwent echocardiography and cardiac contrast-enhanced computed tomography (CT) before intervention. The calcium and fibrosis volumes were assessed and quantified using the ImageJ thresholding method, indexed calcium and fibrosis volume were calculated by dividing the volume by the aortic annular area. For a deeper understanding of molecular mechanisms characterizing AS disorder, differentially expressed genes and functional inferences between women and men's aortic valves were carried out on a publicly available microarray-based gene expression dataset (GSE102249). Cell types enrichment analysis in stenotic aortic valve tissues was used to reconstruct the sex-specific cellular composition of stenotic aortic valves. Results: In agreement with the literature, our CT quantifications showed that women had significantly lower aortic valve calcium content compared to men, while fibrotic tissue composition was significantly higher in women than men. The expression profiles of human stenotic aortic valves confirm sex-dependent processes. Pro-fibrotic processes were prevalent in women, while pro-inflammatory ones, linked to the immune response system, were enhanced in men. Cell-type enrichment analysis showed that mesenchymal cells were over-represented in AS valves of women, whereas signatures for monocytes, macrophages, T and B cells were enriched men ones. Conclusions: Our data provide the basis that the fibro-calcific process of the aortic valve is sex-specific, both at gene expression and cell type level. The quantification of aortic valve fibrosis by CT could make it possible to perform population-based studies and non-invasive assessment of novel therapies to reduce or halt sex-related calcific aortic valve stenosis (CAVS) progression, acting in an optimal window of opportunity early in the course of the disease.


Subject(s)
Aortic Valve Stenosis , Fibromyalgia , Aortic Valve/diagnostic imaging , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Calcinosis , Calcium/metabolism , Female , Fibrosis , Humans , Male
18.
Nat Cell Biol ; 23(12): 1224-1239, 2021 12.
Article in English | MEDLINE | ID: mdl-34876685

ABSTRACT

Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.3 chaperone Daxx, a retrotransposable element repressor inactivated in myeloid leukaemia and other neoplasms, in protection from inflammatory disease. Loss of Daxx alters the chromatin landscape, H3.3 distribution and histone marks of haematopoietic progenitors, leading to engagement of a Pu.1-dependent transcriptional programme for myelopoiesis at the expense of B-cell differentiation. This causes neutrophilia and inflammation, predisposing mice to develop an autoinflammatory skin disease. While these molecular and phenotypic perturbations are in part reverted in animals lacking both Pu.1 and Daxx, haematopoietic progenitors in these mice show unique chromatin and transcriptome alterations, suggesting an interaction between these two pathways. Overall, our findings implicate retrotransposable element silencing in haematopoiesis and suggest a cross-talk between the H3.3 loading machinery and the pioneer transcription factor Pu.1.


Subject(s)
Chromatin/pathology , Co-Repressor Proteins/genetics , Leukocyte Disorders/congenital , Molecular Chaperones/genetics , Myelopoiesis/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , B-Lymphocytes/cytology , Cell Line , Chromatin/genetics , Hematopoietic Stem Cells/cytology , Histones/metabolism , Humans , Inflammation/pathology , Leukocyte Disorders/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Retroelements/genetics , Skin Diseases/genetics , Skin Diseases/immunology , Skin Diseases/pathology
19.
Adv Immunol ; 151: 1-47, 2021.
Article in English | MEDLINE | ID: mdl-34656287

ABSTRACT

In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration. Here, we summarize the development of brain-resident macrophages and astrocytes and their core functions in the developing brain. We discuss their contribution and intercellular crosstalk during tissue homeostasis and pathophysiology. We argue that in-depth knowledge of non-neuronal cells in the brain could provide novel therapeutic targets to reverse or contain neurological diseases.


Subject(s)
Macrophages , Microglia , Brain , Homeostasis , Humans , Neurons
20.
FASEB J ; 35(10): e21939, 2021 10.
Article in English | MEDLINE | ID: mdl-34549824

ABSTRACT

The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.


Subject(s)
Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis , Liver/metabolism , Unfolded Protein Response , Aging , Animals , Disease Progression , Endoplasmic Reticulum Stress , Fatty Liver , Humans , Male , Mice , Non-alcoholic Fatty Liver Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...