Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Gastroenterol ; 18(1): 109, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980170

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is mutually and bidirectionally linked with metabolic syndrome (MetS) of which it is both the cause and the consequences. Worldwide, 6.3 to 33% of the general populations are estimated to suffer from the disease with even higher prevalence in the group sharing metabolic co-morbidities. Hence, this study aims to recognize various risk factors including metabolic components and blood parameters to predict the possible incidence of the disease. METHODS: Total of 429 (219 NAFLD and 210 control) subjects were conveniently selected for study during the period of 9 months. Diagnosis of non-alcoholic fatty liver disease was done by liver imaging and based on liver enzymes. Assessment of metabolic syndrome was done by International Diabetic Federation (IDF) and National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria. All biochemical and hematological parameters and liver enzymes were estimated by using standard guideline. Mean comparison of quantitative data in different groups were performed using analysis of variance (one-way ANOVA). Risk estimation of NAFLD associated with each character was verified by Chi-square test. RESULTS: There was significant high levels of body mass index (BMI), waist circumference (WC) and lipid profiles in NAFLD patients in comparison to control population (p < 0.001). Further, according to the NCEP ATP III criteria, 13.6% of NAFLD were present with MetS where risk estimate was significant (OR = 2.15). Whereas, other criteria (IDF) for MetS showed higher frequency (30.1%) with higher risk (OR = 29.75) for the presence of MetS in NAFLD patients. The change in triglycerides (TG) and HDL-C (high density lipoprotein cholesterol) was also statistically significant in different grades of NAFLD. High risk for NAFLD was associated with existing co-morbid conditions like cardiovascular risk patients (3.18 times) followed by obese patients (1.72 times) and Diabetes Mellitus patients (1.68 times) at a significant level. CONCLUSION: The result of this study suggests that there is an increased prevalence of all the components of MetS and significant changes in biochemical markers in cases of NAFLD. Timely diagnosis would help in delaying its complications and co-morbidities.


Subject(s)
Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Adult , Biomarkers/blood , Body Mass Index , Cross-Sectional Studies , Female , Humans , Lipids/blood , Liver/enzymology , Male , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Middle Aged , Nepal/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Prevalence , Risk Factors , Tertiary Care Centers , Waist Circumference
2.
Photosynth Res ; 113(1-3): 181-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22791016

ABSTRACT

Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.


Subject(s)
Acclimatization/physiology , Cold Temperature , Phloem/physiology , Photosynthesis/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Cell Respiration , Darkness , Humans , Plant Leaves/growth & development , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL