Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915580

ABSTRACT

The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.

2.
Science ; 382(6667): eadf3786, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824652

ABSTRACT

During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.


Subject(s)
Neural Stem Cells , Neurogenesis , Telencephalon , Animals , Female , Pregnancy , Macaca , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurons/physiology , Telencephalon/cytology , Telencephalon/embryology , Neurogenesis/genetics , Galanin-Like Peptide/metabolism , Gene Expression Regulation, Developmental , Mental Disorders/genetics , Nervous System Diseases/genetics , Brain Neoplasms/genetics
3.
Science ; 377(6614): eabo7257, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36007006

ABSTRACT

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.


Subject(s)
Dorsolateral Prefrontal Cortex , Evolution, Molecular , Primates , Somatostatin , Tyrosine 3-Monooxygenase , Adult , Animals , Dopamine/metabolism , Dorsolateral Prefrontal Cortex/cytology , Dorsolateral Prefrontal Cortex/metabolism , Humans , Pan troglodytes , Primates/genetics , Single-Cell Analysis , Somatostatin/genetics , Somatostatin/metabolism , Transcriptome , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL