Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
2.
Eur J Pharmacol ; 666(1-3): 218-25, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21651906

ABSTRACT

In clinical trials, acotiamide hydrochloride (acotiamide: Z-338) has been reported to be useful in the treatment of functional dyspepsia. Here, we investigated the effects of acotiamide on gastric contraction and emptying activities in rats in comparison with itopride hydrochloride (itopride) and mosapride citrate (mosapride). We also examined in vitro the compound's inhibitory effect on acetylcholinesterase (AChE) activity derived from rat stomach. In in vivo studies, acotiamide (30 and 100mg/kg s.c.) and itopride (100mg/kg s.c.) markedly enhanced normal gastric antral motility in rats. In gastric motility dysfunction models, acotiamide (100mg/kg s.c.) and itopride (100mg/kg s.c.) improved both gastric antral hypomotility and the delayed gastric emptying induced by clonidine, an α(2)-adrenoceptor agonist. In contrast, mosapride (10mg/kg s.c.) had no effect on these models. Like the AChE inhibitors itopride (30 mg/kg s.c.) and neostigmine (10 µg/kg s.c.), acotiamide (10mg/kg s.c.) also clearly enhanced gastric body contractions induced by electrical stimulation of the vagus, which were abolished by atropine and hexamethonium, whereas mosapride (3 and 10mg/kg s.c.) did not. In in vitro studies, acotiamide concentration-dependently inhibited rat stomach-derived AChE activity (IC(50)=2.3 µmol/l). In addition, stomach tissue concentrations of acotiamide after administration at 10mg/kg s.c. were sufficient to produce inhibition of AChE activity in rat stomach. These results suggest that acotiamide stimulates gastric motility and improves gastric motility dysfunction in rats by inhibiting AChE activity, and may suggest a role for acotiamide in improving gastric motility dysfunction in patients with functional dyspepsia.


Subject(s)
Acetylcholinesterase/metabolism , Benzamides/pharmacology , Cholinesterase Inhibitors/pharmacology , Gastric Emptying/drug effects , Stomach/drug effects , Stomach/physiology , Thiazoles/pharmacology , Animals , Benzamides/metabolism , Clonidine/pharmacology , Electric Stimulation , Male , Muscle Contraction/drug effects , Rats , Rats, Sprague-Dawley , Stomach/cytology , Stomach/enzymology , Thiazoles/metabolism
3.
J Pharmacol Exp Ther ; 336(3): 791-800, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21123674

ABSTRACT

Acotiamide hydrochloride (acotiamide; N-[2-[bis(1-methylethyl) amino]ethyl]-2-[(2-hydroxy-4,5-dimethoxybenzoyl) amino] thiazole-4-carboxamide monohydrochloride trihydrate, Z-338) has been reported to improve meal-related symptoms of functional dyspepsia in clinical studies. Here, we examined the gastroprokinetic effects of acotiamide and its antiacetylcholinesterase activity as a possible mechanism of action in conscious dogs. Acotiamide increased postprandial gastric motor activity in conscious dogs with chronically implanted force transducers and, like itopride, mosapride, and cisapride, exhibited gastroprokinetic activity in these dogs. Furthermore, acotiamide improved clonidine-induced hypomotility and delayed gastric emptying. Acotiamide-enhanced postprandial gastroduodenal motility was suppressed completely by pretreatment with atropine, a muscarinic receptor antagonist. In in vitro studies, acotiamide enhanced acetylcholine- but not carbachol-induced contractile responses of guinea pig gastric antrum strips. Moreover, like itopride and neostigmine, acotiamide inhibited recombinant human and canine stomach-derived acetylcholinesterase (AChE) activity in vitro. The mode of the AChE inhibitory action of acotiamide was selective and reversible. Unlike itopride or mosapride, acotiamide showed no affinity for dopamine D(2) or serotonin 5-HT(4) receptors. With regard to cardiovascular side effects, unlike cisapride, acotiamide did not affect myocardial monophasic action potential duration, QT interval, or corrected QT interval in anesthetized dogs. These results suggest that acotiamide stimulates gastric motility in vivo by inhibiting AChE activity without affecting QT interval. Acotiamide thus represents a beneficial new drug for the treatment of functional dyspepsia involving gastric motility dysfunction, with differences from other prokinetic agents.


Subject(s)
Benzamides/pharmacology , Benzyl Compounds/pharmacology , Cholinesterase Inhibitors/pharmacology , Cisapride/pharmacology , Gastrointestinal Motility/drug effects , Morpholines/pharmacology , Thiazoles/pharmacology , Animals , Benzamides/chemistry , Benzyl Compounds/chemistry , CHO Cells , Cisapride/chemistry , Cricetinae , Cricetulus , Dogs , Gastrointestinal Motility/physiology , Guinea Pigs , Heart Conduction System/drug effects , Heart Conduction System/physiology , Humans , Male , Morpholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...