Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
J Am Heart Assoc ; 13(7): e033676, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38533937

BACKGROUND: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.


Myocytes, Cardiac , Phosphofructokinase-2 , Animals , Mice , Glucose/metabolism , Insulin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Proteomics , Pyruvates/metabolism
2.
bioRxiv ; 2023 Nov 23.
Article En | MEDLINE | ID: mdl-38045353

Background: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results: cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective: What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.

3.
iScience ; 26(7): 107131, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37534142

A healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis. We hypothesized that increasing PFK-2 activity could mitigate cardiac dysfunction induced by high-fat diet (HFD). Wild type (WT) and cardiac-specific transgenic mice expressing PFK-2 (GlycoHi) were fed a low fat or HFD for 16 weeks to induce metabolic dysfunction. Metabolic phenotypes were determined by measuring mitochondrial bioenergetics and performing targeted quantitative proteomic and metabolomic analysis. Increasing cardiac PFK-2 had beneficial effects on cardiac and mitochondrial function. Unexpectedly, GlycoHi mice also exhibited sex-dependent systemic protection from HFD, including increased glucose homeostasis. These findings support improving glycolysis via PFK-2 activity can mitigate mitochondrial and functional changes that occur with metabolic syndrome.

4.
Geroscience ; 45(2): 983-999, 2023 04.
Article En | MEDLINE | ID: mdl-36460774

SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.


Sirtuin 3 , Mice , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Proteostasis , Mice, Knockout , Myocytes, Cardiac , Mitochondria/metabolism
5.
Redox Biol ; 47: 102140, 2021 11.
Article En | MEDLINE | ID: mdl-34560411

Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•-) levels. O2•- production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•- production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•- production only in the Akita group. In contrast, O2•- production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•- was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•- production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•- than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•-. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity.


Antioxidants , Diabetes Mellitus, Experimental , Animals , Diabetes Mellitus, Experimental/drug therapy , Insulin , Mice , Oxidative Stress , Phosphatidylinositol 3-Kinases
6.
FASEB J ; 35(7): e21728, 2021 07.
Article En | MEDLINE | ID: mdl-34110658

Proliferation and differentiation of preadipocytes, and other cell types, is accompanied by an increase in glucose uptake. Previous work showed that a pulse of high glucose was required during the first 3 days of differentiation in vitro, but was not required after that. The specific glucose metabolism pathways required for adipocyte differentiation are unknown. Herein, we used 3T3-L1 adipocytes as a model system to study glucose metabolism and expansion of the adipocyte metabolome during the first 3 days of differentiation. Our primary outcome measures were GLUT4 and adiponectin, key proteins associated with healthy adipocytes. Using complete media with 0 or 5 mM glucose, we distinguished between developmental features that were dependent on the differentiation cocktail of dexamethasone, insulin, and isobutylmethylxanthine alone or the cocktail plus glucose. Cocktail alone was sufficient to activate the capacity for 2-deoxglucose uptake and glycolysis, but was unable to support the expression of GLUT4 and adiponectin in mature adipocytes. In contrast, 5 mM glucose in the media promoted a transient increase in glucose uptake and glycolysis as well as a significant expansion of the adipocyte metabolome and proteome. Using genetic and pharmacologic approaches, we found that the positive effects of 5 mM glucose on adipocyte differentiation were specifically due to increased expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulator of glycolysis and the ancillary glucose metabolic pathways. Our data reveal a critical role for PFKFB3 activity in regulating the cellular metabolic remodeling required for adipocyte differentiation and maturation.


Adipocytes/metabolism , Glucose/metabolism , Phosphofructokinase-2/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adiponectin/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Dexamethasone/pharmacology , Glucose Transporter Type 4/metabolism , Glycolysis/drug effects , Glycolysis/physiology , Insulin/pharmacology , Male , Mice , Mice, Inbred C57BL , Xanthines/pharmacology
7.
J Clin Sleep Med ; 17(9): 1805-1813, 2021 09 01.
Article En | MEDLINE | ID: mdl-33904391

STUDY OBJECTIVES: This study aims to investigate whether the use of a mandibular advancement device (MAD) is associated with neuroplasticity in corticomotor control of tongue and jaw muscles. METHODS: Eighteen healthy individuals participated in a randomized crossover study with 3 conditions for 2 weeks each: baseline, wearing an oral appliance (sham MAD), or MAD during sleep. The custom-made MAD was constructed by positioning the mandible to 50% of its maximal protrusion limit. Transcranial magnetic stimulation was applied to elicit motor-evoked potentials (MEPs). The MEPs were assessed by constructing stimulus-response curves at 4 stimulus intensities: 90%, 100%, 120%, and 160% of the motor threshold from the right tongue and right masseter and the first dorsal interosseous muscles (control) at baseline, after the first and the second intervention. RESULTS: There was a significant effect of condition and stimulus intensity both on the tongue and on masseter MEPs (P < .01). Tongue and masseter MEPs were significantly higher at 120% and 160% after the MAD compared with the oral appliance (P < .05). There were no effects of condition on first dorsal interosseous muscle MEPs (P = .855). CONCLUSIONS: The finding suggests that MAD induces neuroplasticity in the corticomotor pathway of the tongue and jaw muscles associated with the new jaw position. Further investigations are required in patients with obstructive sleep apnea to see whether this cortical neuroplasticity may contribute or perhaps predict treatment effects with MADs in obstructive sleep apnea. CITATION: Matsuzaki S, Shimada A, Tanaka J, et al. Effect of mandibular advancement device on plasticity in corticomotor control of tongue and jaw muscles. J Clin Sleep Med. 2021;17(9):1805-1813.


Mandibular Advancement , Motor Cortex , Cross-Over Studies , Electromyography , Humans , Masseter Muscle , Occlusal Splints , Tongue
8.
J Inherit Metab Dis ; 44(2): 388-400, 2021 03.
Article En | MEDLINE | ID: mdl-32383294

2-Oxoglutarate dehydrogenase (OGDH) is a rate-limiting enzyme in the mitochondrial TCA cycle, encoded by the OGDH gene. α-Ketoglutarate dehydrogenase (OGDH) deficiency was previously reported in association with developmental delay, hypotonia, and movement disorders and metabolic decompensation, with no genetic data provided. Using whole exome sequencing, we identified two individuals carrying a homozygous missense variant c.959A>G (p.N320S) in the OGDH gene. These individuals presented with global developmental delay, elevated lactate, ataxia and seizure. Fibroblast analysis and modeling of the mutation in Drosophila were used to evaluate pathogenicity of the variant. Skin fibroblasts from subject # 2 showed a decrease in both OGDH protein and enzyme activity. Transfection of human OGDH cDNA in HEK293 cells carrying p.N320S also produced significantly lower protein levels compared to those with wild-type cDNA. Loss of Drosophila Ogdh (dOgdh) caused early developmental lethality, rescued by expressing wild-type dOgdh (dOgdhWT ) or human OGDH (OGDHWT ) cDNA. In contrast, expression to the mutant OGDH (OGDHN320S ) or dOgdh carrying homologous mutations to human OGDH p.N320S variant (dOgdhN324S ) failed to rescue lethality of dOgdh null mutants. Knockdown of dOgdh in the nervous system resulted in locomotion defects which were rescued by dOgdhWT expression but not by dOgdhN324S expression. Collectively, the results indicate that c.959A>G variant in OGDH leads to an amino acid change (p.N320S) causing a severe loss of OGDH protein function. Our study establishes in the first time a genetic link between an OGDH gene mutation and OGDH deficiency.


Ketoglutarate Dehydrogenase Complex/genetics , Mitochondrial Diseases/genetics , Nervous System Diseases/genetics , Adolescent , Animals , Child , Child, Preschool , DNA/genetics , Drosophila , Female , Gene Expression , Gene Knockdown Techniques , Genetic Predisposition to Disease , HEK293 Cells , Homozygote , Humans , Ketoglutarate Dehydrogenase Complex/deficiency , Male , Mutation, Missense , Young Adult
9.
PLoS One ; 15(8): e0231806, 2020.
Article En | MEDLINE | ID: mdl-32817622

The cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. PKA substrate phosphorylation was decreased in Akita ACMs, as compared to wild type, and unresponsive to the effects of insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus/metabolism , Myocytes, Cardiac/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/physiology , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Insulin/metabolism , Insulin/pharmacology , Insulin/physiology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Signal Transduction/drug effects
10.
J Biol Chem ; 294(45): 16831-16845, 2019 11 08.
Article En | MEDLINE | ID: mdl-31562244

The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.


Diet, High-Fat/adverse effects , Glycolysis/drug effects , Heart/drug effects , Myocardium/metabolism , Protein Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Glucose/metabolism , Mice , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardium/cytology , Proteomics , Stress, Physiological , Time Factors
11.
Pediatr Rheumatol Online J ; 17(1): 34, 2019 Jul 03.
Article En | MEDLINE | ID: mdl-31269967

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms. A notable risk factor for the development of coronary artery aneurysms is resistance to intravenous immunoglobulin (IVIG) therapy, which comprises standard treatment for the acute phase of KD. The cause of IVIG resistance in KD is largely unknown; however, the contribution of genetic factors, especially variants in immune-related genes, has been suspected. METHODS: To explore genetic variants related to IVIG-unresponsiveness, we designated KD patients who did not respond to both first and second courses of IVIG therapy as IVIG-unresponsive patients. Using genomic DNA from 30 IVIG-unresponsive KD patients, we performed pooled genome sequencing targeting 39 immune-related cytokine receptor genes. RESULTS: The single nucleotide variant (SNV), rs563535954 (located in the IL4R locus), was concentrated in IVIG-unresponsive KD patients. Individual genotyping showed that the minor allele of rs563535954 was present in 4/33 patients with IVIG-unresponsive KD, compared with 20/1063 individuals in the Japanese genome variation database (odds ratio = 7.19, 95% confidence interval 2.43-21.47). Furthermore, the minor allele of rs563535954 was absent in 42 KD patients who responded to IVIG treatment (P = 0.0337), indicating that a low-frequency variant, rs563535954, is associated with IVIG-unresponsiveness in KD patients. Although rs563535954 is located in the 3'-untranslated region of IL4R, there was no alternation in IL4R expression associated with the mior allele of rs563535954. However, IVIG-unresponsive patients that exhibited the minor allele of rs563535954 tended to be classified into the low-risk group (based on previously reported risk scores) for prediction of IVIG-resistance. Therefore, IVIG-unresponsiveness associated with the minor allele of rs563535954 might differ from IVIG-unresponsiveness associated with previous risk factors used to evaluate IVIG-unresponsiveness in KD. CONCLUSION: These findings suggest that the SNV rs563535954 could serve as a predictive indicator of IVIG-unresponsiveness, thereby improving the sensitivity of risk scoring systems, and may aid in prevention of coronary artery lesions in KD patients.


Immunoglobulins, Intravenous/therapeutic use , Interleukin-4 Receptor alpha Subunit/genetics , Mucocutaneous Lymph Node Syndrome/genetics , Polymorphism, Single Nucleotide/genetics , Child , Child, Preschool , Coronary Artery Disease/genetics , Drug Resistance/genetics , Female , Gene Expression Profiling , Gene Frequency , Genome-Wide Association Study , Humans , Infant , Japan/ethnology , Male , Mucocutaneous Lymph Node Syndrome/drug therapy , RNA, Messenger/genetics , Sequence Analysis, RNA , Treatment Failure
12.
Metabolomics ; 15(2): 18, 2019 01 28.
Article En | MEDLINE | ID: mdl-30830475

INTRODUCTION: As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated. OBJECTIVES: The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile. METHODS: Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography-mass spectrometry metabolic profiling and multivariate data analysis. RESULTS: Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17-0.15). CONCLUSIONS: Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.


Amino Acids, Branched-Chain/metabolism , Fructosediphosphates/metabolism , Myocardium/metabolism , Animals , Blood Glucose/metabolism , Fasting/metabolism , Fructose , Gas Chromatography-Mass Spectrometry/methods , Glucose/metabolism , Heart/physiology , Insulin , Male , Metabolomics/methods , Mice , Mice, Transgenic , Phosphofructokinase-2/metabolism , Principal Component Analysis
13.
PLoS One ; 14(2): e0208399, 2019.
Article En | MEDLINE | ID: mdl-30716067

Diabetic retinopathy (DR) is a common neurovascular complication of type 1 diabetes. Current therapeutics target neovascularization characteristic of end-stage disease, but are associated with significant adverse effects. Targeting early events of DR such as neurodegeneration may lead to safer and more effective approaches to treatment. Two independent prospective clinical trials unexpectedly identified that the PPARα agonist fenofibrate had unprecedented therapeutic effects in DR, but gave little insight into the physiological and molecular mechanisms of action. The objective of the present study was to evaluate potential neuroprotective effects of PPARα in DR, and subsequently to identify the responsible mechanism of action. Here we reveal that activation of PPARα had a robust protective effect on retinal function as shown by Optokinetic tracking in a rat model of type 1 diabetes, and also decreased retinal cell death, as demonstrated by a DNA fragmentation ELISA. Further, PPARα ablation exacerbated diabetes-induced decline of visual function as demonstrated by ERG analysis. We further found that PPARα improved mitochondrial efficiency in DR, and decreased ROS production and cell death in cultured retinal neurons. Oxidative stress biomarkers were elevated in diabetic Pparα-/- mice, suggesting increased oxidative stress. Mitochondrially mediated apoptosis and oxidative stress secondary to mitochondrial dysfunction contribute to neurodegeneration in DR. Taken together, these findings identify a robust neuroprotective effect for PPARα in DR, which may be due to improved mitochondrial function and subsequent alleviation of energetic deficits, oxidative stress and mitochondrially mediated apoptosis.


Diabetes Mellitus, Type 1/metabolism , Diabetic Retinopathy/metabolism , Neuroprotective Agents/metabolism , PPAR alpha/metabolism , Animals , Apoptosis/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetic Retinopathy/drug therapy , Disease Models, Animal , Fenofibrate/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Prospective Studies , Rats , Rats, Inbred BN , Rats, Sprague-Dawley , Retina/drug effects , Retina/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/metabolism
14.
J Cachexia Sarcopenia Muscle ; 10(2): 411-428, 2019 04.
Article En | MEDLINE | ID: mdl-30706998

BACKGROUND: Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS: We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS: The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS: Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.

16.
JAMA Pediatr ; 172(5): e180030, 2018 05 07.
Article En | MEDLINE | ID: mdl-29507955

Importance: Few studies with sufficient statistical power have shown the association of the z score of the coronary arterial internal diameter with coronary events (CE) in patients with Kawasaki disease (KD) with coronary artery aneurysms (CAA). Objective: To clarify the association of the z score with time-dependent CE occurrence in patients with KD with CAA. Design, Setting, and Participants: This multicenter, collaborative retrospective cohort study of 44 participating institutions included 1006 patients with KD younger than 19 years who received a coronary angiography between 1992 and 2011. Main Outcomes and Measures: The time-dependent occurrence of CE, including thrombosis, stenosis, obstruction, acute ischemic events, and coronary interventions, was analyzed for small (z score, <5), medium (z score, ≥5 to <10; actual internal diameter, <8 mm), and large (z score, ≥10 or ≥8 mm) CAA by the Kaplan-Meier method. The Cox proportional hazard regression model was used to identify risk factors for CE after adjusting for age, sex, size, morphology, number of CAA, resistance to initial intravenous immunoglobulin (IVIG) therapy, and antithrombotic medications. Results: Of 1006 patients, 714 (71%) were male, 341 (34%) received a diagnosis before age 1 year, 501 (50%) received a diagnosis between age 1 and 5 years, and 157 (16%) received a diagnosis at age 5 years or older. The 10-year event-free survival rate for CE was 100%, 94%, and 52% in men (P < .001) and 100%, 100%, and 75% in women (P < .001) for small, medium, and large CAA, respectively. The CE-free rate was 100%, 96%, and 79% in patients who were not resistant to IVIG therapy (P < .001) and 100%, 96%, and 51% in patients who were resistant to IVIG therapy (P < .001), respectively. Cox regression analysis revealed that large CAA (hazard ratio, 8.9; 95% CI, 5.1-15.4), male sex (hazard ratio, 2.8; 95% CI, 1.7-4.8), and resistance to IVIG therapy (hazard ratio, 2.2; 95% CI, 1.4-3.6) were significantly associated with CE. Conclusions and Relevance: Classification using the internal diameter z score is useful for assessing the severity of CAA in relation to the time-dependent occurrence of CE and associated factors in patients with KD. Careful management of CE is necessary for all patients with KD with CAA, especially men and IVIG-resistant patients with a large CAA.


Coronary Aneurysm/etiology , Mucocutaneous Lymph Node Syndrome/complications , Adolescent , Child , Child, Preschool , Coronary Aneurysm/diagnostic imaging , Coronary Aneurysm/epidemiology , Coronary Aneurysm/pathology , Coronary Angiography , Coronary Disease/diagnostic imaging , Coronary Disease/epidemiology , Coronary Disease/etiology , Drug Resistance , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Infant , Japan/epidemiology , Kaplan-Meier Estimate , Male , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/epidemiology , Retrospective Studies , Risk Assessment/methods , Risk Factors , Severity of Illness Index , Sex Factors
17.
Mol Metab ; 9: 141-155, 2018 03.
Article En | MEDLINE | ID: mdl-29398615

OBJECTIVE: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. METHODS: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. RESULTS: Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aß uptake, both critical functions of astrocytes in the brain. CONCLUSIONS: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies.


Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Memory, Short-Term , Mitochondria/metabolism , Receptor, IGF Type 1/genetics , Aging/metabolism , Animals , Cells, Cultured , Glucose/metabolism , Hippocampus/cytology , Hippocampus/growth & development , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction
18.
EMBO Rep ; 19(3)2018 03.
Article En | MEDLINE | ID: mdl-29420235

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Endopeptidase Clp/genetics , Insulin Resistance/genetics , Mitochondria/genetics , Obesity/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Mice , Mice, Knockout , Mitochondria/metabolism , Obesity/metabolism , Obesity/pathology , Unfolded Protein Response/genetics
19.
Clin Rheumatol ; 37(7): 1937-1943, 2018 Jul.
Article En | MEDLINE | ID: mdl-29302828

Infliximab (IFX) is effective for treatment of refractory Kawasaki disease (KD). However, the precise mechanisms and biomarkers for IFX efficacy are unknown. We tried to evaluate the effect and response to IFX therapy by measuring serum cytokine levels. Twenty-nine children with KD who had been resistant to two courses of high-dose intravenous immunoglobulin were enrolled and treated with IFX. Plasma samples were analyzed for cytokines before and after IFX administration. Serum levels of interleukin-6, granulocyte colony-stimulating factor (G-CSF), interferon-gamma-induced monokine, interferon-gamma inducible protein 10 (IP-10), monocyte chemotactic protein 1, and soluble tumor necrosis factor-alpha receptor (sTNFR) 1 and 2 were significantly elevated before IFX treatment, but promptly decreased after the administration. The pre-treatment G-CSF and sTNFR1 levels in non-responders to IFX were significantly higher than in responders, who were defined as patients who defervesce (< 37.5 °C). After IFX administration, elevated cytokines declined to normal ranges in responders, but in non-responsive group, G-CSF and sTNFR1 remained elevated without failing to normal levels. IFX treatment significantly reduced the levels of serum cytokines, chemokines, and sTNFRs in refractory KD. G-CSF and sTNFR1 may be indicators predictive of poor response to IFX.


Antirheumatic Agents/therapeutic use , Cytokines/blood , Immunoglobulins, Intravenous/administration & dosage , Infliximab/therapeutic use , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/drug therapy , Biomarkers/blood , Child , Child, Preschool , Female , Humans , Infant , Japan , Male
20.
J Am Heart Assoc ; 6(12)2017 Dec 04.
Article En | MEDLINE | ID: mdl-29203581

BACKGROUND: The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Diabetes mellitus disrupts this metabolic flexibility and promotes cardiomyopathy through mechanisms that are not completely understood. Phosphofructokinase 2 (PFK-2) is a primary regulator of cardiac glycolysis and substrate selection, yet its regulation under normal and pathological conditions is unknown. This study was undertaken to determine how changes in insulin signaling affect PFK-2 content, activity, and cardiac metabolism. METHODS AND RESULTS: Streptozotocin-induced diabetes mellitus, high-fat diet feeding, and fasted mice were used to identify how decreased insulin signaling affects PFK-2 and cardiac metabolism. Primary adult cardiomyocytes were used to define the mechanisms that regulate PFK-2 degradation. Both type 1 diabetes mellitus and a high-fat diet induced a significant decrease in cardiac PFK-2 protein content without affecting its transcript levels. Overnight fasting also induced a decrease in PFK-2, suggesting it is rapidly degraded in the absence of insulin signaling. An unbiased metabolomic study demonstrated that decreased PFK-2 in fasted animals is accompanied by an increase in glycolytic intermediates upstream of phosphofructokianse-1, whereas those downstream are diminished. Mechanistic studies using cardiomyocytes showed that, in the absence of insulin signaling, PFK-2 is rapidly degraded via both proteasomal- and chaperone-mediated autophagy. CONCLUSIONS: The loss of PFK-2 content as a result of reduced insulin signaling impairs the capacity to dynamically regulate glycolysis and elevates the levels of early glycolytic intermediates. Although this may be beneficial in the fasted state to conserve systemic glucose, it represents a pathological impairment in diabetes mellitus.


Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Type 1/enzymology , Diabetic Cardiomyopathies/enzymology , Glycolysis , Insulin/blood , Myocardium/enzymology , Phosphofructokinase-2/metabolism , Animals , Autophagy , Cells, Cultured , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/pathology , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/etiology , Diet, Fat-Restricted , Diet, High-Fat , Down-Regulation , Enzyme Stability , Fasting/blood , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Myocardium/pathology , Phosphofructokinase-2/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , Streptozocin , Time Factors
...