Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Rep ; 14(1): 9458, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658633

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Colorectal Neoplasms , Liver Neoplasms , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Middle Aged , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism
2.
BMC Genomics ; 25(1): 243, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443832

BACKGROUND: Mosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes enriched samples. RESULTS: Regulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and development of regulatory T cells. CONCLUSIONS: Here, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk for cancer observed among men with Y loss in leukocytes.


Chromosomes, Human, Y , Neoplasms , Humans , Male , Chromosomes, Human, Y/genetics , T-Lymphocytes, Regulatory , Leukocytes, Mononuclear , Mosaicism
3.
Science ; 377(6603): 292-297, 2022 07 15.
Article En | MEDLINE | ID: mdl-35857592

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Aging , Chromosome Deletion , Heart Failure , Hematopoietic Stem Cells , Myocardium , Y Chromosome , Aging/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Fibrosis , Heart Failure/genetics , Heart Failure/therapy , Macrophages , Male , Mice , Mosaicism , Myocardium/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Y Chromosome/genetics
5.
Cell Biosci ; 11(1): 205, 2021 Dec 12.
Article En | MEDLINE | ID: mdl-34895331

BACKGROUND: Mosaic loss of Y chromosome (LOY) is the most common somatic change that occurs in circulating white blood cells of older men. LOY in leukocytes is associated with increased risk for all-cause mortality and a range of common disease such as hematological and non-hematological cancer, Alzheimer's disease, and cardiovascular events. Recent genome-wide association studies identified up to 156 germline variants associated with risk of LOY. The objective of this study was to use these variants to calculate a novel polygenic risk score (PRS) for LOY, and to assess the predictive performance of this score in a large independent population of older men. RESULTS: We calculated a PRS for LOY in 5131 men aged 70 years and older. Levels of LOY were estimated using microarrays and validated by whole genome sequencing. After adjusting for covariates, the PRS was a significant predictor of LOY (odds ratio [OR] = 1.74 per standard deviation of the PRS, 95% confidence intervals [CI] 1.62-1.86, p < 0.001). Men in the highest quintile of the PRS distribution had > fivefold higher risk of LOY than the lowest (OR = 5.05, 95% CI 4.05-6.32, p < 0.001). Adding the PRS to a LOY prediction model comprised of age, smoking and alcohol consumption significantly improved prediction (AUC = 0.628 [CI 0.61-0.64] to 0.695 [CI 0.67-0.71], p < 0.001). CONCLUSIONS: Our results suggest that a PRS for LOY could become a useful tool for risk prediction and targeted intervention for common disease in men.

6.
Sci Rep ; 11(1): 15160, 2021 07 26.
Article En | MEDLINE | ID: mdl-34312421

Mosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


12E7 Antigen/blood , Chromosomes, Human, Y/genetics , Leukocytes/immunology , Mosaicism , 12E7 Antigen/deficiency , 12E7 Antigen/genetics , Aged , Aged, 80 and over , Aging/blood , Aging/genetics , Aging/immunology , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Chromosomes, Human, Y/immunology , Chromosomes, Human, Y/metabolism , Humans , Leukocytes/metabolism , Male , Mutation , RNA, Messenger/blood , RNA, Messenger/genetics , Single-Cell Analysis
7.
Cell Mol Life Sci ; 78(8): 4019-4033, 2021 Apr.
Article En | MEDLINE | ID: mdl-33837451

Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.


Alzheimer Disease/genetics , Chromosomes, Human, Y , Mosaicism , Prostatic Neoplasms/genetics , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Killer Cells, Natural/metabolism , Leukocytes/metabolism , Male
8.
Eur J Hum Genet ; 29(9): 1323-1324, 2021 09.
Article En | MEDLINE | ID: mdl-33462398
9.
BMC Med Genomics ; 13(1): 85, 2020 06 26.
Article En | MEDLINE | ID: mdl-32586322

BACKGROUND: Oesophageal atresia (OA) is a life-threatening developmental defect characterized by a lost continuity between the upper and lower oesophagus. The most common form is a distal connection between the trachea and the oesophagus, i.e. a tracheoesophageal fistula (TEF). The condition may be part of a syndrome or occurs as an isolated feature. The recurrence risk in affected families is increased compared to the population-based incidence suggesting contributing genetic factors. METHODS: To gain insight into gene variants and genes associated with isolated OA we conducted whole genome sequencing on samples from three families with recurrent cases affected by congenital and isolated TEF. RESULTS: We identified a combination of single nucleotide variants (SNVs), splice site variants (SSV) and structural variants (SV) annotated to altogether 100 coding genes in the six affected individuals. CONCLUSION: This study highlights rare SVs among candidate gene variants in our individuals with OA and provides a gene framework for further investigations of genetic factors behind this malformation.


Esophageal Atresia/genetics , Esophageal Atresia/pathology , Genetic Markers , Polymorphism, Single Nucleotide , Adult , Child , Cohort Studies , Female , Humans , Male , Pedigree , Whole Genome Sequencing
10.
Eur J Hum Genet ; 28(3): 349-357, 2020 03.
Article En | MEDLINE | ID: mdl-31654039

Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer's disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.


Aging/genetics , Chromosome Deletion , Chromosomes, Human, Y/genetics , Mosaicism , Polymorphism, Genetic , Aging/blood , Blood Cells/metabolism , Humans , Male
11.
Nature ; 575(7784): 652-657, 2019 11.
Article En | MEDLINE | ID: mdl-31748747

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.


Chromosome Deletion , Chromosomes, Human, Y/genetics , Genetic Predisposition to Disease/genetics , Genomic Instability/genetics , Leukocytes/pathology , Mosaicism , Adult , Aged , Computational Biology , Databases, Genetic , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , Neoplasms/genetics , United Kingdom
...