ABSTRACT
Flame-resistant materials are key components in buildings and several other engineering applications. In this study, flame retardancy and thermal stability were conferred to a highly flammable technical thermoplastic-polypropylene (PP)-upon compositing with a carbonaceous tannin-based particulate (CTP). Herein, we report on a straightforward, facile, and green approach to prepare self-extinguishing thermoplastic composites by thermoblending highly recalcitrant particulate. The thermal stability and mechanical properties of the composites are tethered to the CTP content. We demonstrate that the addition of up to 65 wt% of CTP improved the viscoelastic properties and hydrophobicity of the PP, whereas having marginal effects on bulk water interactions. Most importantly, compositing with CTP remarkably improved the thermal stability of the composites, especially over 300 °C, which is an important threshold associated with the combustion of volatiles. PP-CTP composites demonstrated great capacity to limit and stop fire propagation. Therefore, we offer an innovative route towards thermally resistant and self-extinguishing PP composites, which is enabled by sustainable tannin-based flame retardants capable of further broadening the technical range of commodity polyolefins to high temperature scenarios.
ABSTRACT
Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30-50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical-mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.
ABSTRACT
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Subject(s)
PlasticsABSTRACT
We report on the combination of cellulose nanofibrils (CNFs) and condensed tannins from Acacia mearnsii for the development of hybrid, functional films. The tannins are fractionated and concentrated in polyphenolics that are used for functional components in the hybrid materials. Cogrinding of wood fibers with the tannins in aqueous media allows simultaneous fiber deconstruction and in situ binding of tannins on the freshly exposed cellulosic surfaces. Hence, a tightly bound bicomponent system is produced, which is otherwise not possible if typical adsorption protocols are followed, mainly due to the extensive hydration typical of CNFs. A nonionic surfactant is used to tailor the cellulose-tannin interactions. The proposed strategy not only enables the incorporation of tannins with CNFs but also endows a high and prolonged antioxidant effect of films formed by filtration. Compared to tannin-free films, those carrying tannins are considerably more hydrophobic. In addition, they show selective absorption of ultraviolet light while maintaining optical transparency in the visible range. The proposed simple protocol for incorporating tannins and surfactants with CNFs is suitable to produce functional materials. This is possible by understanding associated interfacial phenomena in the context of sustainable materials within the concept of the circular bioeconomy.
Subject(s)
Acacia , Tannins , Cellulose , Surface-Active Agents , WoodABSTRACT
The effect of thermal treatments on physical and mechanical properties of rose gum and Sydney blue gum wood was evaluated. Wood samples were thermally modified in a combination: pre-treatment in an autoclave (127°C - 1h) and treatment in an oven (180-240°C - 4h); and only treatment in an oven at 180-240°C for 4h. Chemical changes in the structure of woods were evaluated through infrared spectroscopy. Evaluation of physical properties was performed through mass loss, specific gravity, equilibrium moisture content and dimensional stability tests. Surface changes were analyzed through apparent contact angle technique and static bending tests were carried out to evaluate the mechanical behavior. Use of pre-treatment in autoclave affected the properties analyzed, however oven, resulted in the highest changes on wood from both species. Chemical changes were related to the degradation of hemicelluloses. Moreover, a significant decrease of hygroscopicity and mechanical strength of thermally modified woods was observed, while specific gravity did not significantly change for either of the species studied. The best results of decrease of wettability were found in low temperatures, while dimensional stability increased as a function of temperature of exposure in oven. The highest loss of mechanical strength was observed at 240°C for both species.