Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 151: 21-32, 2019 06.
Article in English | MEDLINE | ID: mdl-30940537

ABSTRACT

BACKGROUND: It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aß) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aß-induced deficits in LTP. The anaesthetics xenon and S-ketamine both act as NMDA receptor antagonists and have been reported to be neuroprotective. In this study, we investigated the effects of subanaesthetic concentrations of these drugs on LTP deficits induced by different Aß oligomers and compared them to the effects of radiprodil, a NMDA subunit 2B (GluN2B)-selective antagonist. METHODS: We applied different Aß oligomers to murine brain slices and recorded excitatory postsynaptic field potentials before and after high-frequency stimulation in the CA1 region of hippocampus. Radiprodil, xenon and S-ketamine were added and recordings evoked from a second input were measured. RESULTS: Xenon and radiprodil, applied at low concentrations, partially restored the LTP deficit induced by pre-incubated Aß1-42. S-ketamine showed no effect. None of the drugs tested were able to ameliorate Aß1-40-induced LTP-deficits. CONCLUSIONS: Xenon administered at subanaesthetic concentrations partially restored Aß1-42-induced impairment of LTP, presumably via its weak NMDA receptor antagonism. The effects were in a similar range than those obtained with the NMDA-GluN2B antagonist radiprodil. Our results point to protective properties of xenon in the context of pathological distorted synaptic physiology which might be a meaningful alternative for anaesthesia in AD patients.


Subject(s)
Amyloid beta-Peptides/pharmacology , Anesthetics/administration & dosage , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Peptide Fragments/pharmacology , Xenon/administration & dosage , Acetamides/administration & dosage , Animals , Excitatory Postsynaptic Potentials/drug effects , Mice , Piperidines/administration & dosage
2.
Neuropharmacology ; 123: 100-115, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28174113

ABSTRACT

To elucidate whether a permanent reduction of the GluN2B subunit affects the pathology of Alzheimer's disease (AD), we cross-bred mice heterozygous for GluN2B receptors in the forebrain (hetGluN2B) with a mouse model for AD carrying a mutated amyloid precursor protein with the Swedish and Arctic mutation (mAPP) resulting in a hetGluN2B/mAPP transgenic. By means of voltage-sensitive dye imaging (VSDI) in the di-synaptic hippocampal pathway and the recording of field excitatory postsynaptic potentials (fEPSPs), hippocampal slices of all genotypes (WT, hetGluN2B, mAPP and hetGluN2B/mAPP, age 9-18 months) were tested for spatiotemporal activity propagation and long-term potentiation (LTP) induction. CA1-LTP induced by high frequency stimulation (HFS; 100 Hz/1s) was not different in all genotypes. Aß1-42 (50 nM)-application reduced potentiation of fEPSP in WT and hetGluN2B/mAPP mice, LTP in mAPP and hetGluN2B mice was not affected. For VSDI a fast depolarization signal was evoked in the granule cell layer and propagation was analysed in hippocampal CA3 and CA1 region before and after theta stimulation (100pulses/5 Hz). LTP was not significantly different between all genotypes. In mAPP mice θ-stim produced an epileptiform activity reflected in a pronounced prolongation of the FDS compared to the other genotypes. In slices of hetGluN2B/mAPP and GluN2B mice, however, these parameters were similar to WT mice indicating a reversal effect of the attenuated GluN2B expression. The induction of a hetGluN2B mutation in the mAPP reversed some pathophysiological changes on hippocampal LTP and provide further evidence for the involvement of the glutamatergic system in AD and emphasize the GluN2B subunit as a potential target for AD treatment.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Amyloid/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Humans , Long-Term Potentiation/physiology , Male , Mice, Transgenic , Receptors, N-Methyl-D-Aspartate/genetics , Tissue Culture Techniques
3.
Front Comput Neurosci ; 11: 109, 2017.
Article in English | MEDLINE | ID: mdl-29321737

ABSTRACT

The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.

4.
Neuropharmacology ; 105: 154-163, 2016 06.
Article in English | MEDLINE | ID: mdl-26785076

ABSTRACT

Long-term potentiation (LTP), a major cellular correlate of memory storage, depends on activation of the ERK/MAPK signalling pathway, but the cell type-specific localization of activated MAPKs remains unknown. We found that in the CA1 field of the hippocampus, shortly after LTP induction, an increase in the number of MAPK-positive cells occurred specifically among astrocytes of the stratum radiatum, suggesting a putative role of astrocytes for LTP. Desipramine (DMI) is an antidepressant which is used to treat major depressive disorder, but also other pathologies such as neuropathic pain or attention-deficit/hyperactivity disorder. Tricyclic antidepressants such as DMI may cause memory impairment as a side effect. However, biological underpinnings of this effect still remain unclear. Here, we show that DMI inhibited the astrocytic MAPK activation and thereby hindered synaptic potentiation. These effects correlated with a reduced neuronal activation in the stratum pyramidale, thereby prompting us to analyse a regulator of LTP located at the astrocyte-neuron interface in the stratum radiatum, namely the ephrinA3/EphA4 signalling pathway. DMI enhanced EphA4 clustering, which favoured an increased ephrinA3-mediated EphA4 phosphorylation and elevated EphA4 forward signalling. The co-administration of DMI with the Src inhibitor SU6656, which blocks EphA4 forward signalling, could partially reverse the LTP attenuation, further supporting the targeting of the ephrinA3/EphA4 pathway by DMI. Thus, our findings suggest a putative novel mechanism for DMI to modulate LTP through the regulation of the ephrinA3/EphA4 signalling pathway. A further exploration of the molecular and behavioral consequences of targeting ephrinA3/EphA4 might help to improve the clinical use of DMI.


Subject(s)
Antidepressive Agents, Tricyclic/administration & dosage , Astrocytes/drug effects , Astrocytes/metabolism , Desipramine/administration & dosage , Ephrin-A3/metabolism , Long-Term Potentiation/drug effects , MAP Kinase Signaling System , Receptor, EphA4/metabolism , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Male , Mice , Signal Transduction/drug effects
5.
Sci Rep ; 6: 19293, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26757616

ABSTRACT

Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research.


Subject(s)
Neurons/drug effects , Neurons/physiology , Potassium Channels/metabolism , Animals , Behavior, Animal/drug effects , Cell Line , Humans , Memory/drug effects , Mice , Morpholines/pharmacology , Potassium Channels/genetics , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Protein Interaction Domains and Motifs/genetics , Protein Stability/drug effects , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
6.
Anesthesiology ; 122(5): 1047-59, 2015 May.
Article in English | MEDLINE | ID: mdl-25782754

ABSTRACT

BACKGROUND: The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. METHODS: The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. RESULTS: Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. CONCLUSIONS: Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.


Subject(s)
Anesthetics, Inhalation/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/drug effects , Potassium Channels/drug effects , Xenon/pharmacology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cyclic AMP/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/cytology , Nerve Net/drug effects , Neurons/drug effects , Patch-Clamp Techniques , Potassium Channels/genetics , Thalamus/cytology , Thalamus/drug effects
7.
Anesthesiology ; 120(3): 639-49, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335749

ABSTRACT

BACKGROUND: Tranexamic acid (TXA) is commonly used to reduce blood loss in cardiac surgery and in trauma patients. High-dose application of TXA is associated with an increased risk of postoperative seizures. The neuronal mechanisms underlying this proconvulsant action of TXA are not fully understood. In this study, the authors investigated the effects of TXA on neuronal excitability and synaptic transmission in the basolateral amygdala. METHODS: Patch clamp recordings and voltage-sensitive dye imaging were performed in acute murine brain slices. Currents through N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor type A (GABAA) receptors were recorded. GABAA receptor-mediated currents were evoked upon electrical stimulation or upon photolysis of caged GABA. TXA was applied at different concentrations. RESULTS: Voltage-sensitive dye imaging demonstrates that TXA (1 mM) reversibly enhances propagation of neuronal excitation (mean ± SEM, 129 ± 6% of control; n = 5). TXA at concentrations of 0.1, 0.3, 1, 5, or 10 mM led to a dose-dependent reduction of GABAA receptor-mediated currents in patch clamp recordings. There was no difference in the half-maximal inhibitory concentration for electrically (0.76 mM) and photolytically (0.84 mM) evoked currents (n = 5 to 9 for each concentration), and TXA did not affect the paired-pulse ratio of GABAA receptor-mediated currents. TXA did not impact glutamatergic synaptic transmission. CONCLUSIONS: This study clearly demonstrates that TXA enhances neuronal excitation by antagonizing inhibitory GABAergic neurotransmission. The results provide evidence that this effect is mediated via postsynaptic mechanisms. Because GABAA receptor antagonists are known to promote epileptiform activity, this effect might explain the proconvulsant action of TXA.


Subject(s)
Amygdala/drug effects , Antifibrinolytic Agents/pharmacology , Receptors, GABA-A/drug effects , Seizures/chemically induced , Synaptic Transmission/drug effects , Tranexamic Acid/pharmacology , Animals , Disease Models, Animal , Electric Stimulation/methods , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques/methods , Photolysis
8.
Front Cell Neurosci ; 7: 91, 2013.
Article in English | MEDLINE | ID: mdl-23882180

ABSTRACT

Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS) and field excitatory postsynaptic potentials (fEPSP) were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean ± Standard error of the mean; 231.8 ± 31.2% of control; n = 10) while neither affecting fEPSPs (104.3 ± 4.2%; n = 10) nor long-term potentiation (LTP). However, when Schaffer-collaterals were excited via action potentials (APs) generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n = 8) and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1) expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca(2+)-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

9.
Anesthesiology ; 116(3): 673-82, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22293720

ABSTRACT

BACKGROUND: The memory-blocking properties of general anesthetics are of high clinical relevance and scientific interest. The inhalational anesthetic xenon antagonizes N-methyl-D-aspartate (NMDA) receptors. It is unknown if xenon affects long-term potentiation (LTP), a cellular correlate for memory formation. In hippocampal brain slices, the authors investigated in area CA1 whether xenon affects LTP, NMDA receptor-mediated neurotransmission, and intracellular calcium concentrations. METHODS: In sagittal murine hippocampal brain slices, the authors investigated the effects of xenon on LTP by recording excitatory postsynaptic field potentials. Using fluorometric calcium imaging, the authors tested the influence of xenon on calcium influx during high-frequency stimulation. In addition, using the patch-clamp technique, the xenon effect on synaptic and extrasynaptic NMDA receptors and L-type calcium channels was examined. RESULTS: In the absence of xenon, high-frequency stimulation reliably induced LTP and potentiated field potential slopes to (mean ± SEM) 127.2 ± 5.8% (P < 0.001). In the presence of xenon, high-frequency stimulation induced only a short-term potentiation, and field potentials returned to baseline level after 15-20 min (105.9 ± 2.9%; P = 0.090). NMDA receptor-mediated excitatory postsynaptic currents were reduced reversibly by xenon to 65.9 ± 9.4% (P = 0.007) of control. When extrasynaptic receptors were activated, xenon decreased NMDA currents to 58.2 ± 5.8% (P < 0.001). Xenon reduced the increase in intracellular calcium during high-frequency stimulation without affecting L-type calcium channels. CONCLUSIONS: N-methyl-D-aspartate receptor activation is crucial for the induction of CA1 LTP. Thus, the depression of NMDA receptor-mediated neurotransmission presumably contributes to the blockade of LTP under xenon. Because LTP is assumed to be involved in learning and memory, its blockade might be a key mechanism for xenon's amnestic properties.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Synapses/physiology , Xenon/pharmacology , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Neural Inhibition/physiology , Organ Culture Techniques , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/drug effects
10.
Anesthesiology ; 111(6): 1297-307, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19934875

ABSTRACT

BACKGROUND: The molecular mechanisms of the inhalational anesthetic xenon are not yet fully understood. Recently, the authors showed that xenon reduces both N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated synaptic transmission in a brain slice preparation of the amygdala. In the current study, the authors examined the effects of xenon on synaptic transmission in the prefrontal cortex and the spinal cord dorsal horn (substantia gelatinosa). METHODS: In rodent brain or spinal cord slice preparations, the authors used patch clamp technique to investigate the impact of xenon on NMDA and AMPA receptor-mediated excitatory postsynaptic currents, as well as on gamma-aminobutyric acid type A receptor-mediated inhibitory postsynaptic currents. The currents were either evoked upon electrical stimulation (NMDA-eEPSCs and AMPA-eEPSCs) or upon photolysis of caged L-glutamate (p-NMDA-Cs and p-AMPA-Cs). In addition, the authors investigated the effects of xenon on AMPA receptor-mediated miniature excitatory postsynaptic currents. RESULTS: In both central nervous system regions, xenon had virtually no effect on inhibitory postsynaptic currents. In the prefrontal cortex (spinal cord), xenon reversibly reduced NMDA-eEPSCs to approximately 58% (72%) and AMPA-eEPSCs to approximately 67% (65%) of control. There was no difference in the xenon-induced reduction of NMDA-eEPSCs and p-NMDA-Cs, or AMPA-eEPSCs and p-AMPA-Cs. Xenon did not affect the frequency of miniature excitatory postsynaptic currents but reduced their amplitude. CONCLUSIONS: In the current study, the authors found that xenon depresses NMDA and AMPA receptor-mediated synaptic transmission in the prefrontal cortex and the substantia gelatinosa without affecting gamma-aminobutyric acid type A receptor-mediated synaptic transmission. These results provide evidence that the effects of xenon are primarily due to postsynaptic mechanisms.


Subject(s)
Anesthetics, Inhalation , Posterior Horn Cells/drug effects , Prefrontal Cortex/drug effects , Spinal Cord/drug effects , Synaptic Transmission/drug effects , Xenon , Animals , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Pain/physiopathology , Receptors, AMPA/drug effects , Receptors, GABA-A/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL