Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
J Mol Struct ; 1240: 130534, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33967342

ABSTRACT

The three-dimensional hybrid structures of coronavirus spike proteins including the C-terminal sequence and receptor binding motif (RBM) was remodeled and energy minimized. Further, protein-protein docking show that Receptor Binding Domain (RBD) of SARS-CoV 2 Lys457-Pro490 bind on the surface of ACE2 receptor near N-terminal helices to form host-pathogen attachment. In this binding interface, SARS-CoV 2 shows a tight network of hydrogen bonds than other spike proteins from BtRsRaTG13-CoV, SARS-CoV, BtRsBeta-CoV, BtRsCoV-related, Pangolin-CoV (PCoV), human-CoV (hCoV), MERS-CoV (MCoV), Avian-CoV (ACoV) and PEDV1-CoV. Further studies show that subdomains from SARS-CoV 2 RBD Pro322-Thr581, SARS-CoV RBD Pro309-Pro575, BtRsRaTG13 RBD Thr581-Thr323, BtRsBeta-CoV RBD Ser311-Thr568, BtRsCoV-related Arg306-Pro575 and PCoV RBD Gln319-Ser589 show binding conformations with ACE2 like their full-length structures of spike proteins. In addition, the subdomains MCoV RBD Gly372-Val616, ACoV RBD Gly372-Val616 and PEDV1-CoV RBD Ala315-Tyr675 also binds on the surface of ACE2 similar to their full-length spike proteins. The B-Cell epitope mapping also identified main antigenic determinants predicting that these nine subdomains are highly useful in recombinant vaccine development in inducing cross neutralizing antibodies against SARS-CoV 2 spike protein and inhibits its attachment with ACE2.

3.
Drug Metab Dispos ; 46(4): 397-404, 2018 04.
Article in English | MEDLINE | ID: mdl-29440179

ABSTRACT

Cytochrome P450 CYP3A4 is the most abundant drug-metabolizing enzyme and is responsible for the metabolism of ∼50% of clinically available drugs. Induction of CYP3A4 impacts the disposition of its substrates and leads to harmful clinical consequences, such as failure of therapy. To prevent such undesirable consequences, the molecular mechanisms of regulation of CYP3A4 need to be fully understood. CYP3A4 induction is regulated primarily by the xenobiotic nuclear receptor pregnane-X receptor (PXR). After ligand binding, PXR is translocated to the nucleus, where it binds to the CYP3A4 promoter and induces its gene expression. PXR function is modulated by phosphorylation(s) by multiple kinases. In this study, we determined the role of the c-Jun N-terminal kinase (JNK) in PXR-mediated induction of CYP3A4 enzyme in vitro. Human liver carcinoma cells (HepG2) were transfected with CYP3A4 luciferase and PXR plasmids, followed by treatment with JNK inhibitor (SP600125; SP) and PXR activators rifampicin (RIF) or hyperforin. Our results indicate that SP treatment significantly attenuated PXR-mediated induction of CYP3A4 reporter activity, as well as gene expression and enzyme activity. JNK knockdown by siRNA (targeting both JNK 1 and 2) also attenuated CYP3A4 induction by RIF. Interestingly, SP treatment attenuated JNK activation by RIF. Furthermore, treatment with RIF increased PXR nuclear levels and binding to the CYP3A4 promoter; SP attenuated these effects. This study shows that JNK is a novel mechanistic regulator of CYP3A4 induction by PXR.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Receptors, Steroid/metabolism , Cell Line, Tumor , Enzyme Induction/drug effects , Hep G2 Cells , Humans , Inactivation, Metabolic/drug effects , Liver/drug effects , Liver/metabolism , Pregnane X Receptor , Promoter Regions, Genetic/drug effects , RNA, Small Interfering/metabolism , Rifampin/pharmacology
4.
Food Chem Toxicol ; 114: 23-33, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29432836

ABSTRACT

Quercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency. However, hyperoxia is one of the major risk factors for the development of bronchopulmonary dysplasia (BPD), which is also termed chronic lung disease in premature infants. Currently, no preventive approaches have been reported against BPD. The treatment of BPD is notably limited to oxygen administration, ventilatory support, and steroids. Since QU has been shown to be effective in reducing inflammation and oxidative stress in various disease models, we hypothesized that the postnatal QU treatment of newborn mice will protect against hyperoxic lung injury by the upregulation of the phase I (CYP1A/B) and/or phase II, NADPH quinone reductase enzymes. Newborn C57BL/6J mice within 24 h of birth with the nursing dams were exposed to either 21% O2 (air) and/or 85% O2 (hyperoxia) for 7 days. The mice were treated, intraperitoneally (i.p.) once every other day with quercetin, at a concentration of 20 mg/kg, or saline alone from postnatal day (PND) 2-6. The mice were sacrificed on day 7, and lung and liver tissues were collected. The expression levels of CYP1A1, CYP1B1, NQO1 proteins and mRNA as well as the levels of MDA-protein adducts were analyzed in lung and liver tissues. The findings indicated that QU attenuated hyperoxia-mediated lung injury by reducing inflammation and improving alveolarization with decreased number of neutrophil and macrophage infiltration. The attenuation of this lung injury correlated with the upregulation of CYP1A1/CYP1B1/NQO1 mRNA, proteins and the down regulation of NF-kB levels and MDA-protein adducts in lung and liver tissues. The present study demonstrated the potential therapeutic value of quercetin in the prevention and/or treatment of BPD.


Subject(s)
Bronchopulmonary Dysplasia/drug therapy , Hyperoxia/drug therapy , Quercetin/administration & dosage , Animals , Animals, Newborn/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Humans , Hyperoxia/genetics , Hyperoxia/metabolism , Infant, Newborn , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/drug effects , Oxygen/metabolism
5.
Cancer Immunol Res ; 6(3): 332-347, 2018 03.
Article in English | MEDLINE | ID: mdl-29382671

ABSTRACT

The presence of mast cells in some human colorectal cancers is a positive prognostic factor, but the basis for this association is incompletely understood. Here, we found that mice with a heterozygous mutation in the adenomatous polyposis coli gene (ApcMin/+) displayed reduced intestinal tumor burdens and increased survival in a chemokine decoy receptor, ACKR2-null background, which led to discovery of a critical role for mast cells in tumor defense. ACKR2-/-ApcMin/+ tumors showed increased infiltration of mast cells, their survival advantage was lost in mast cell-deficient ACKR2-/-SA-/-ApcMin/+ mice as the tumors grew rapidly, and adoptive transfer of mast cells restored control of tumor growth. Mast cells from ACKR2-/- mice showed elevated CCR2 and CCR5 expression and were also efficient in antigen presentation and activation of CD8+ T cells. Mast cell-derived leukotriene B4 (LTB4) was found to be required for CD8+ T lymphocyte recruitment, as mice lacking the LTB4 receptor (ACKR2-/-BLT1-/-ApcMin/+) were highly susceptible to intestinal tumor-induced mortality. Taken together, these data demonstrate that chemokine-mediated recruitment of mast cells is essential for initiating LTB4/BLT1-regulated CD8+ T-cell homing and generation of effective antitumor immunity against intestinal tumors. We speculate that the pathway reported here underlies the positive prognostic significance of mast cells in selected human tumors. Cancer Immunol Res; 6(3); 332-47. ©2018 AACR.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Intestinal Neoplasms/immunology , Mast Cells/immunology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/immunology , Animals , Female , Immunologic Surveillance , Leukotriene B4/immunology , Male , Mice, Transgenic , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Receptors, Leukotriene B4/genetics , Receptors, Leukotriene B4/immunology
6.
Toxicol Appl Pharmacol ; 339: 133-142, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29180065

ABSTRACT

Exposure to supraphysiological concentrations of oxygen (hyperoxia) leads to bronchopulmonary dysplasia (BPD), one of the most common pulmonary morbidities in preterm neonates, which is more prevalent in males than females. Beta-naphthoflavone (BNF) is protective against hyperoxic lung injury in adult and neonatal wild type (WT) mice and in and mice lacking Cyp1a1gene. In this investigation, we tested the hypothesis that BNF treatment will attenuate neonatal hyperoxic lung injury in WT and Cyp1a2-/- mice, and elucidated the effect of sex-specific differences. Newborn WT or Cyp1a2-/- mice were treated with BNF (10mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 8 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14days. Hyperoxia exposure lead to alveolar simplification and arrest in angiogenesis in WT as well as Cyp1a2-/- mice No significant differences were seen between WT and Cyp1a2-/- mice. Cyp1a2-/- female mice had better preservation of pulmonary angiogenesis at PND15 compared to similarly exposed males. BNF treatment attenuated lung injury and inflammation in both genotypes, and this was accompanied by a significant induction of hepatic and pulmonary CYP1A1 in WT but not in Cyp1a2-/- mice. BNF treatment increased NADPH quinone oxidoreductase (NQO1) mRNA levels in Cyp1a2-/- mouse livers compared to WT mice. These results suggest that BNF is protective in neonatal mice exposed to hyperoxia independent of CYP1A2 and this may entail the protective effect of phase II enzymes like NQO1.


Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Cytochrome P-450 CYP1A2/deficiency , Hyperoxia/drug therapy , Hyperoxia/metabolism , beta-Naphthoflavone/therapeutic use , Acute Lung Injury/genetics , Animals , Animals, Newborn , Cytochrome P-450 CYP1A2/genetics , Enzyme Inhibitors/therapeutic use , Female , Hyperoxia/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Treatment Outcome
7.
Biochem Biophys Res Commun ; 495(1): 408-413, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29101037

ABSTRACT

Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this study, we tested the hypothesis that newborn transgenic mice carrying the human CYP1A1-Luc promoter will display transcriptional activation of the human CYP1A1 promoter in vivo upon exposure to hyperoxia, and that these mice will be less susceptible to hyperoxic lung injury and alveolar simplification than similarly exposed wild type (WT) mice. Newborn WT (CD-1) or transgenic mice carrying a 13.2 kb human CYP1A1 promoter and the luciferase (Luc) reporter gene (CYP1A1-luc) were maintained in room air or exposed to hyperoxia (85% O2) for 7-14 days. Hyperoxia exposure of CYP1A1-Luc mice for 7 and 14 days resulted in 4- and 30-fold increases, respectively, in hepatic Luc (CYP1A1) expression, compared to room air controls. In lung, hyperoxia caused a 2-fold induction of reporter Luc at 7 days, but the induction declined after 14 days. The newborn CYP1A1-Luc mice were less susceptible to lung injury and alveolar simplification than similarly exposed wild type (WT) CD-1 mice. Also, the CYP1A1-Luc mice showed increased levels of hepatic and pulmonary CYP1A1 expression and hepatic CYP1A2 activity after hyperoxia exposure. Hyperoxia also increased NADP(H) quinone reductase (NQO1) pulmonary gene expression in both CD-1 and CYP1A1-Luc mice at both time points, but this was more pronounced in the latter at 14 days. Our results support the hypothesis that hyperoxia activates the human CYP1A1 promoter in newborn mice, and that increased endogenous expression of CYP1A1 and NADP(H) quinone reductase (NQO1) contributes to the decreased susceptibilities to hyperoxic lung injury in the transgenic animals. This is the first report providing evidence of hyperoxia-mediated transcriptional activation of the human CYP1A1 promoter in newborn mice, and this in conjunction with decreased lung injury, suggests that these phenomena have important implications for BPD.


Subject(s)
Cytochrome P-450 CYP1A1/genetics , Hyperoxia/complications , Hyperoxia/genetics , Lung Injury/etiology , Lung Injury/genetics , Lung/pathology , Transcriptional Activation , Animals , Animals, Newborn , Humans , Hyperoxia/metabolism , Hyperoxia/pathology , Lung/metabolism , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Transgenic , NAD(P)H Dehydrogenase (Quinone)/genetics , Oxygen/metabolism , Promoter Regions, Genetic
8.
Oncoimmunology ; 6(12): e1361593, 2017.
Article in English | MEDLINE | ID: mdl-29209564

ABSTRACT

Inflammation and infection are key promoters of colon cancer but the molecular interplay between these events is largely unknown. Mice deficient in leukotriene B4 receptor1 (BLT1) are protected in inflammatory disease models of arthritis, asthma and atherosclerosis. In this study, we show that BLT1-/- mice when bred onto a spontaneous tumor (ApcMin/+) model displayed an increase in the rate of intestinal tumor development and mortality. A paradoxical increase in inflammation in the tumors from the BLT1-/-ApcMin/+ mice is coincidental with defective host response to infection. Germ-free BLT1-/-ApcMin/+ mice are free from colon tumors that reappeared upon fecal transplantation. Analysis of microbiota showed defective host response in BLT1-/- ApcMin/+ mice reshapes the gut microbiota to promote colon tumor development. The BLT1-/-MyD88-/- double deficient mice are susceptible to lethal neonatal infections. Broad-spectrum antibiotic treatment eliminated neonatal lethality in BLT1-/-MyD88-/- mice and the BLT1-/-MyD88-/-ApcMin+ mice are protected from colon tumor development. These results identify a novel interplay between the Toll-like receptor mediated microbial sensing mechanisms and BLT1-mediated host response in the control of colon tumor development.

9.
Neurotoxicol Teratol ; 63: 60-65, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28778836

ABSTRACT

Chronic and excessive alcohol consumption leads to various neurological diseases. Synaptosomes are ideal organelles to study the functional properties of the brain in alcoholism. This study focuses on the association between oxidative stress and synaptosomal membrane properties in alcohol treated rats. Sixty day old male albino rats were treated with 20% alcohol at 5g/kg body weight/ day for sixty days. Alcohol administration significantly increased the levels of thiobarbituric acid reactive substances (TBARS) and protein carbonyls with decreased catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD) activities and reduced glutathione (GSH) content in synaptosomes. Further, alcohol administration decreased (cholesterol/phospholipids) C/P ratio in synaptosomal membranes, which was further confirmed using 1,6 diphenyl 1,3 hexatriene (DPH) as fluorescent probe. Moreover, alcohol treatment also increased membrane bound Na+/K+-ATPase, Ca2+-ATPase and Mg2+-ATPase enzyme activities. Correlation (r) analysis revealed that anisotropic (γ) values were strongly associated with lipid peroxidation (r=0.678) and Na+/K+-ATPase activity (r=0.793). The results of the present study clearly indicate that lipid peroxidation was positively correlated (r=0.621) with Na+/K+-ATPase activity and C/P ratio was negatively associated (r=-0.549) in alcohol treated animals. Similar results were found on alcohol treatment (50 and 100mM) of brain synaptosomes in vitro. But with the co-treatment of vitamin E reversed these changes. In conclusion, synaptosomal membranes properties are impaired due to increased oxidative stress, changes in lipid composition, altered fluidity and membrane bound enzyme activities. And treatment with vitamin E renders protection against ethanol-induced membrane alterations.


Subject(s)
Antioxidants/pharmacology , Cell Membrane/drug effects , Ethanol/pharmacology , Oxidative Stress/drug effects , Synaptosomes/drug effects , Vitamin E/metabolism , Animals , Glutathione/metabolism , Lipid Peroxidation/drug effects , Male , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
10.
Neoplasia ; 19(3): 237-249, 2017 03.
Article in English | MEDLINE | ID: mdl-28254151

ABSTRACT

Wilms' tumors (WT), which accountfor 6% of all childhood cancers, arise from dysregulated differentiation of nephrogenic progenitor cells from embryonic kidneys. Though there is an improvement in the prognosis of WT, still 10% of patients with WT die due to recurrence. Thus more effective treatment approaches are necessary. We previously characterized the inflammatory microenvironment in human WT and observed the robust expression of COX-2. The aim of this study was to extend our studies to analyze the role of COX-2 pathway components in WT progression using a mouse model of WT. Herein, COX-2 pathway components such as COX-2, HIF1-α, p-ERK1/2, and p-STAT3 were upregulated in mouse and human tumor tissues. In our RPPA analysis, COX-2 was up-regulated in M15 cells after Wt1 gene was knocked down. Flow cytometry analysis showed the increased infiltration of immune suppressive inflammatory cells such as pDC's and Treg cells in tumors. The chemotactic chemokines responsible for the infiltration of these cells were also induced in CCR5 and CXCR4 dependent manner respectively. The immunosuppressive cytokines IL-10, TGF-ß, and TNF-α were also up-regulated. Furthermore, more pronounced Th2 and Treg induced cytokine response was observed than Th1 response in tumors. Basing on all these evidences it is speculated that COX-2 pathway may be a beneficial target for the treatment of WT. It may be most effective as an adjuvant therapy together with other inhibitors. Thus, our current study provides a good rationale for initiating animal studies to confirm the efficacy of COX-2 inhibitors in decreasing tumor cell growth in vivo.


Subject(s)
Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cyclooxygenase 2/metabolism , Immune Tolerance , Signal Transduction , Tumor Microenvironment/immunology , Wilms Tumor/immunology , Wilms Tumor/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cluster Analysis , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Knockout , Models, Biological , Mutation , Phenotype , Tumor Microenvironment/genetics , WT1 Proteins/metabolism , Wilms Tumor/genetics , Wilms Tumor/pathology , Xenograft Model Antitumor Assays
11.
Toxicol Sci ; 157(1): 260-271, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28201809

ABSTRACT

Prolonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. ß-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes. Newborn WT or Cyp1a1-null mice were treated with BNF (10 mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 14 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14 days. Both genotypes showed lung injury, inflammation, and alveolar simplification in hyperoxia, with Cyp1a1-null mice displaying increased susceptibility compared to WT mice. BNF treatment resulted in significant attenuation of lung injury and inflammation, with improved alveolarization in both WT and Cyp1a1-null mice. BNF exposed normoxic or hyperoxic WT mice showed increased expression of hepatic CYP1A1/1A2, pulmonary CYP1A1, and NQO1 expression at both mRNA and protein levels, compared with vehicle controls. However, BNF caused greater induction of hepatic CYP1A2 and pulmonary NQO1 enzymes in the Cyp1a1-null mice, suggesting that BNF protects against hyperoxic lung injury in WT and Cyp1a1-null mice through the induction of CYP1A and NQO1 enzymes. Further studies on the protective role of flavonoids against hyperoxic lung injury in newborns could lead to novel strategies for the prevention and/or treatment of BPD.


Subject(s)
Bronchopulmonary Dysplasia/etiology , Cytochrome P-450 CYP1A1/genetics , Infant, Premature , Oxygen/administration & dosage , beta-Naphthoflavone/administration & dosage , Animals , Animals, Newborn , Blotting, Western , Bronchopulmonary Dysplasia/genetics , Genetic Predisposition to Disease , Humans , Infant, Newborn , Mice , Mice, Knockout , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/enzymology
12.
J Clin Biochem Nutr ; 60(1): 63-69, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28163384

ABSTRACT

The present study aimed to understand the association between erythrocyte membrane alterations and hemolysis in chronic alcoholics. Study was conducted on human male volunteers aged between 35-45 years with a drinking history of 8-10 years. Results showed that plasma marker enzymes AST, ALT, ALP and γGT were increased in alcoholic subjects. Plasma and erythrocyte membrane lipid peroxidation, erythrocyte lysate nitric oxide (NOx) levels were also increased significantly in alcoholics. Furthermore, erythrocyte membrane protein carbonyls, total cholesterol, phospholipid and cholesterol/phospholipid (C/P) ratio were increased in alcoholics. SDS-PAGE analysis of erythrocyte membrane proteins revealed that increased density of band 3, protein 4.2, 4.9, actin and glycophorins, whereas glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glycophorin A showed slight increase, however, decreased ankyrin with no change in spectrins (α and ß) and protein 4.1 densities were observed in alcoholics. Moreover, alcoholics red blood cells showed altered morphology with decreased resistance to osmotic hemolysis. Increased hemolysis showed strong positive association with lipid peroxidation (r = 0.703, p<0.05), protein carbonyls (r = 0.754, p<0.05), lysate NOx (r = 0.654, p<0.05) and weak association with C/P ratio (r = 0.240, p<0.05). Bottom line, increased lipid and protein oxidation, altered membrane C/P ratio and membrane cytoskeletal protein profile might be responsible for the increased hemolysis in alcoholics.

13.
Toxicol Appl Pharmacol ; 311: 26-33, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27725188

ABSTRACT

Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H2O2) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H2O2 levels. Furthermore, H2O2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H2O2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H2O2-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H2O2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role.


Subject(s)
Heme Oxygenase-1/biosynthesis , Hydrogen Peroxide/pharmacology , Lung/embryology , Microvessels/drug effects , NF-E2-Related Factor 2/metabolism , Omeprazole/pharmacology , Signal Transduction , Cells, Cultured , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Humans , Hydrogen Peroxide/metabolism , Lung/blood supply , Microvessels/enzymology
14.
Biomed Pharmacother ; 83: 1057-1063, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27544549

ABSTRACT

Pterocarpus santalinus, a traditional medicinal plant has shown protective mechanisms against various complications. The aim of the present study is to evaluate therapeutic efficacy of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced oxidative/nitrosative stress leading to hepatotoxicity. In-vitro studies revealed that PSE possess strong DPPH (1,1-diphenyl-2-picryl hydrazyl) and nitric oxide radical scavenging activity. For in vivo studies male albino Wistar rats were treated with 20% alcohol (5g/kg b.wt/day) and PSE (250mg/kg b.wt/day) for 60days. Results showed that alcohol administration significantly altered plasma lipid profile with marked increase in the levels of plasma transaminases (ALT and AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (γGT). Moreover, lipid peroxides, nitric oxide (NOx) levels in plasma and liver were increased with increased iNOS protein expression in liver was noticed in alcohol administered rats and these levels were significantly brought back close to normal level by PSE administration except iNOS protein expression. Alcohol administration also decreased the content of reduced glutathione (GSH) and activities of glutathione peroxidase (GPx), glutathione-s transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in liver, which were significantly enhanced by administration of PSE. The active compounds pterostilbene, lignan and lupeols present in PSE might have shown protection against alcohol-induced hepatic damage by possibly reducing the rate of lipid peroxidation, NOx levels and increasing the antioxidant defence mechanism in alcohol administered rats. Both biochemical and histopathological results in the alcohol-induced liver damage model emphasize beneficial action of PSE as a hepatoprotective agent.


Subject(s)
Liver/pathology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Pterocarpus/chemistry , Alcohols/administration & dosage , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/blood , Free Radical Scavengers/pharmacology , Glutathione/metabolism , Lipids/blood , Lipoproteins/blood , Liver/drug effects , Liver/enzymology , Male , Nitrosation/drug effects , Oxidation-Reduction , Plant Extracts/chemistry , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Wood/chemistry
15.
Transl Oncol ; 7(4): 484-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24969538

ABSTRACT

The role of inflammation in cancer has been reported in various adult malignant neoplasms. By contrast, its role in pediatric tumors has not been as well studied. In this study, we have identified and characterized the infiltration of various inflammatory immune cells as well as inflammatory markers in Wilms tumor (WT), the most common renal malignancy in children. Formalin-fixed paraffin-embedded blocks from tumors and autologous normal kidneys were immunostained for inflammatory immune cells (T cells, B cells, macrophages, neutrophils, and mast cells) and inflammatory markers such as cyclooxygenase-2 (COX-2), hypoxia-inducible factor 1α, phosphorylated STAT3, phosphorylated extracellular signal-related kinases 1 and 2, inducible nitric oxide synthase, nitrotyrosine, and vascular endothelial growth factor expression. Overall, we found that there was predominant infiltration of tumor-associated macrophages in the tumor stroma where COX-2 was robustly expressed. The other tumor-associated inflammatory markers were also mostly localized to tumor stroma. Hence, we speculate that COX-2-mediated inflammatory microenvironment may be important in WT growth and potential therapies targeting this pathway may be beneficial and should be tested in clinical settings for the treatment of WTs in children.

16.
Toxicol Lett ; 230(2): 322-32, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24657529

ABSTRACT

Maternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification, and that cytochrome P450 (CYP)1A and 1B1 enzymes and oxidative stress mechanistically contribute to this phenomenon. Timed pregnant Fisher 344 rats were administered BP (25 mg/kg) or the vehicle corn oil (CO) on gestational days 18, 19 and 20, and newborn rats were either maintained in room air or exposed to hyperoxia (85% O2) for 7 or 14 days. Hyperoxic newborn rats prenatally exposed to the vehicle CO showed lung injury and alveolar simplification, and inflammation, and these effects were potentiated in rats that were prenatally exposed to BP. Prenatal exposure to BP, followed by hyperoxia, also resulted in significant modulation of hepatic and pulmonary cytochrome P450 (CYP)1A and 1B1 enzymes at PND 7-14. These rats displayed significant oxidative stress in lungs at postnatal day (PND) 14, as evidenced by increased levels of the F2-isoprostane 8-iso-PGF2α. Furthermore, these animals showed BP-derived DNA adducts and oxidative DNA adducts in the lung. In conclusion, our results show increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification following maternal exposure to BP, and our results suggest that modulation of CYP1A/1B1 enzymes, increases in oxidative stress, and BP-DNA adducts contributed to this phenomenon.


Subject(s)
Benzo(a)pyrene/toxicity , Fetus/drug effects , Hyperoxia/complications , Lung Injury/etiology , Pulmonary Alveoli/drug effects , Animals , Animals, Newborn , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , DNA Adducts/analysis , Female , Pregnancy , Rats , Rats, Inbred F344
17.
Pathophysiology ; 21(2): 153-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24393670

ABSTRACT

The protective effect of Emblica officinalis fruit extract (EFE) against alcohol-induced oxidative damage in liver microsomes was investigated in rats. EFE (250mg/kg b.wt/day) and alcohol (5g/kg b.wt/day, 20%, w/v) were administered orally to animals for 60 days. Alcohol administration significantly increased lipid peroxidation, protein carbonyls with decreased sulfhydryl groups in microsomes, which were significantly restored to normal levels in EFE and alcohol co-administered rats. Alcohol administration also markedly decreased the levels of reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in the liver microsomes, which were prevented with EFE administration. Further, alcohol administration significantly increased the activities of cytochrome P-450, Na(+)/K(+) and Mg(2+) ATPases and also membrane fluidity. But, administration of EFE along with alcohol restored the all above enzyme activities and membrane fluidity to normal level. Thus, EFE showed protective effects against alcohol-induced oxidative damage by possibly reducing the rate of lipid peroxidation and restoring the various membrane bound and antioxidant enzyme activities to normal levels, and also by protecting the membrane integrity in rat liver microsomes. In conclusion, the polyphenolic compounds including flavonoid and tannoid compounds present in EFE might be playing a major role against alcohol-induced oxidative stress in rats.

18.
Alcohol Alcohol ; 48(6): 679-86, 2013.
Article in English | MEDLINE | ID: mdl-23966453

ABSTRACT

AIM: The aim of the study was to elucidate the molecular mechanisms underlying the alcohol perturbation leading to deleterious effects on erythrocyte membrane transport in chronic alcoholics. METHODS: Membrane bound enzyme activities such as Na(+), K(+)-ATPase, Ca(2+),Mg(2+)-ATPase and acetylcholine esterase and membrane transport analysis by in vitro and erythrocyte membrane profile analysis in controls and chronic alcoholic red cells were analyzed. RESULTS: It was observed that decreased Na(+), K(+)-ATPase enzyme activity and increased activities of Ca(2+),Mg(2+)-ATPase and acetylcholine esterase in chronic alcoholics compared to controls. The in vitro studies of erythrocytes suggested that there is an increased uptake of glucose through chronic alcoholic red cells. However, glucose utilization by chronic alcoholic red cells was decreased. An increased sensitivity of ouabain for its binding site on Na(+), K(+)-ATPase in chronic alcoholic erythrocyte membrane was evident from this study. Though there appears to be an increased Na(+) influx in chronic alcoholic cells, the status of Na(+) transport is not altered much. However, ouabain caused slight disturbances in the transport of sodium, similar disturbances in the potassium transport resulting in much accumulation of potassium in red cells. CONCLUSIONS: It was concluded that chronic alcohol consumption modified certain membrane bound proteins, enzymes and transport mechanisms in chronic alcoholics.


Subject(s)
Alcoholism/blood , Blood Proteins/metabolism , Carrier Proteins/metabolism , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/drug effects , Membrane Proteins/analysis , Acetylcholinesterase/blood , Adenosine Triphosphatases/metabolism , Adult , Alcoholics , Alcoholism/enzymology , Blood Glucose/analysis , Blood Glucose/metabolism , Blood Proteins/analysis , Carrier Proteins/analysis , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Erythrocyte Membrane/enzymology , Humans , Male , Middle Aged , Ouabain/pharmacology , Potassium/blood , Silver Staining , Sodium/blood
19.
Hum Exp Toxicol ; 31(7): 652-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22249389

ABSTRACT

Chronic alcohol consumption is a major reason for several human diseases, and alcoholism has been associated with a variety of societal problems. Changes in fatty acid metabolism in alcoholics and its effects leading to membrane damage are largely unknown. Therefore, we aimed to investigate the fatty acid composition of erythrocyte membrane phospholipids in relation with plasma lipid profile and other plasma metabolites in chronic alcoholics in comparison with controls. We systematically measured the levels of glucose, lactate and pyruvate in the blood and free amino acids, free fatty acids, mucoproteins and glycolipids, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL) cholesterol and triglycerides (TG) in plasma of chronic alcoholics and controls. Furthermore, we measured fatty acid composition by gas chromatographic analysis. The fatty acid composition clearly revealed certain changes in chronic alcoholic erythrocyte membrane, chiefly increments in C16:0 and a decrease in C22:4 and C22:6 fatty acids besides the presence of unidentified fatty acids, probably C-24 or C-26 fatty acids. In addition, a significant increase in blood lactate, decrease in blood pyruvate and increased levels of free amino acids and free fatty acids, mucoproteins, VLDL cholesterol, TG and HDL-C in chronic alcoholics were observed with no significant change in plasma TC, LDL-C and glycolipids when compared with controls. Alcohol-induced alterations in plasma and erythrocyte membranes of chronic alcoholics in the present study might be an adaptive response to counteract the deleterious effects of alcohol. The implications of our findings warrant further investigation and needs further in-depth study to explore the mechanisms of alcohol-induced membrane changes.


Subject(s)
Alcoholism/blood , Erythrocytes/metabolism , Lipids/blood , Adult , Amino Acids/blood , Blood Glucose/analysis , Case-Control Studies , Erythrocyte Membrane/metabolism , Humans , Lactic Acid/blood , Lipids/chemistry , Male , Middle Aged , Mucoproteins/blood , Pyruvic Acid/blood
20.
Exp Toxicol Pathol ; 64(7-8): 697-703, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21282047

ABSTRACT

Alcohol consumption is associated with a number of toxicological changes in blood and the oxidant-antioxidant system. The present study was performed to investigate the alcohol induced toxicological, pathological changes in blood and an adaptive role of erythrocyte antioxidant system in chronic alcoholics. Human male volunteers aged 44±6 years with similar dietary habits were divided into two groups, namely non-alcoholic controls and chronic alcoholics. We measured hematological parameters, erythrocyte lipid peroxidation, NO production, erythrocyte antioxidant and liver function test enzyme activities. Alcoholics had increased erythrocyte nitric oxide levels and also elevated erythrocyte lipid malondialdehyde (MDA) concentrations. Strikingly, increments in reduced glutathione and markedly increased activities of certain antioxidant enzymes such as glutathione reductase (GR), superoxide dismutase (SOD), and another related enzyme G-6 phosphate dehydrogenase (G6-PDH) with no alterations in the activities of glutathione S-transferase (GST), glutathione peroxidase (GPx), and catalase (CAT) in chronic alcoholics were observed compared to controls. Furthermore, erythrocyte NO levels were positively correlated with lipid peroxidation, SOD, GSH, GR and G6PDH in chronic alcoholics. In addition, increased AST/ALT ratio and a significant increase in WBC and platelets were also noticed. Together, these results indicate that, antioxidants and defense enzymes appear to be rendering protection as a consequence of chronic adaptation in alcoholics.


Subject(s)
Adaptation, Physiological/drug effects , Alcoholism/blood , Alcoholism/pathology , Erythrocytes/drug effects , Ethanol/toxicity , Adult , Alcoholism/enzymology , Antioxidants/metabolism , Case-Control Studies , Erythrocytes/enzymology , Erythrocytes/pathology , Humans , Lipid Peroxidation/drug effects , Liver Function Tests , Male , Malondialdehyde/blood , Nitrates/blood , Nitric Oxide/metabolism , Nitrites/blood
SELECTION OF CITATIONS
SEARCH DETAIL