Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39128939

ABSTRACT

The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.


Subject(s)
Corpus Striatum , Decision Making , Gyrus Cinguli , Neurons , Reward , Gyrus Cinguli/physiology , Gyrus Cinguli/physiopathology , Animals , Male , Decision Making/physiology , Neurons/physiology , Corpus Striatum/physiology , Corpus Striatum/physiopathology , Action Potentials/physiology , Reaction Time/physiology , Motivation/physiology , Psychomotor Performance/physiology
2.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38569923

ABSTRACT

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Subject(s)
Gyrus Cinguli , Optogenetics , Rats, Long-Evans , Animals , Gyrus Cinguli/physiology , Male , Rats , Female , Attention/physiology , Reward , Choice Behavior/physiology , Decision Making/physiology , Neural Inhibition/physiology
SELECTION OF CITATIONS
SEARCH DETAIL