Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nature ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961300

ABSTRACT

In biological systems, the activities of macromolecular complexes must sometimes be turned off. Thus, a wide variety of protein inhibitors has evolved for this purpose. These inhibitors function through diverse mechanisms, including steric blocking of crucial interactions, enzymatic modification of key residues or substrates, and perturbation of post-translational modifications1. Anti-CRISPRs-proteins that block the activity of CRISPR-Cas systems-are one of the largest groups of inhibitors described, with more than 90 families that function through diverse mechanisms2-4. Here, we characterize the anti-CRISPR AcrIF25, and we show that it inhibits the type I-F CRISPR-Cas system by pulling apart the fully assembled effector complex. AcrIF25 binds to the predominant CRISPR RNA-binding components of this complex, comprising six Cas7 subunits, and strips them from the RNA. Structural and biochemical studies indicate that AcrIF25 removes one Cas7 subunit at a time, starting at one end of the complex. Notably, this feat is achieved with no apparent enzymatic activity. To our knowledge, AcrIF25 is the first example of a protein that disassembles a large and stable macromolecular complex in the absence of an external energy source. As such, AcrIF25 establishes a paradigm for macromolecular complex inhibitors that may be used for biotechnological applications.

2.
Annu Rev Virol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950439

ABSTRACT

Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.

3.
Nat Commun ; 15(1): 1644, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388474

ABSTRACT

Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.


Subject(s)
Bacteriophages , Pseudomonas Infections , Humans , Bacteriophages/genetics , Prophages/genetics , Pseudomonas Infections/microbiology , Virion/genetics
4.
Mol Microbiol ; 121(1): 116-128, 2024 01.
Article in English | MEDLINE | ID: mdl-38038061

ABSTRACT

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.


Subject(s)
Bacteriophages , Pseudomonas aeruginosa , Quinolones , Pseudomonas aeruginosa/genetics , Bacteriophages/metabolism , Signal Transduction , Quorum Sensing/genetics , Virus Replication , Bacterial Proteins/metabolism
5.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662248

ABSTRACT

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.

6.
Sci Rep ; 13(1): 9820, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330527

ABSTRACT

Bacteria in the genus Streptomyces are found ubiquitously in nature and are known for the number and diversity of specialized metabolites they produce, as well as their complex developmental lifecycle. Studies of the viruses that prey on Streptomyces, known as phages, have aided the development of tools for genetic manipulation of these bacteria, as well as contributing to a deeper understanding of Streptomyces and their behaviours in the environment. Here, we present the genomic and biological characterization of twelve Streptomyces phages. Genome analyses reveal that these phages are closely related genetically, while experimental approaches show that they have broad overlapping host ranges, infect early in the Streptomyces lifecycle, and induce secondary metabolite production and sporulation in some Streptomyces species. This work expands the group of characterized Streptomyces phages and improves our understanding of Streptomyces phage-host dynamics.


Subject(s)
Bacteriophages , Streptomyces , Bacteriophages/genetics , Streptomyces/genetics , Secondary Metabolism/genetics , Genome, Viral , Genomics , Phylogeny
7.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37260386

ABSTRACT

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Subject(s)
Bacteriocins , Bacteriophages , Humans , Pyocins/pharmacology , Pseudomonas aeruginosa/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteriophages/metabolism
8.
Curr Opin Microbiol ; 73: 102321, 2023 06.
Article in English | MEDLINE | ID: mdl-37121062

ABSTRACT

Temperate phages are pervasive in nature, existing within bacterial cells in a form known as prophages. In this state, survival of the phage is intricately tied to the survival of the bacterial host. As a result, prophages often encode genes that increase bacterial fitness. One important way to increase survival is to provide defense against competing phages. Recent work reviewed here reveals that prophages provide a diverse and robust reservoir of antiphage defense systems that likely play a major role in bacterial-phage dynamics.


Subject(s)
Bacteriophages , Prophages , Prophages/genetics , Lysogeny , Bacteriophages/genetics , Bacteria/genetics
10.
J Mol Biol ; 435(7): 168041, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36893938

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide bacteria and archaea with an adaptive immune response against invasion by mobile genetic elements like phages, plasmids, and transposons. These systems have been repurposed as very powerful biotechnological tools for gene editing applications in both bacterial and eukaryotic systems. The discovery of natural off-switches for CRISPR-Cas systems, known as anti-CRISPR proteins, provided a mechanism for controlling CRISPR-Cas activity and opened avenues for the development of more precise editing tools. In this review, we focus on the inhibitory mechanisms of anti-CRISPRs that are active against type II CRISPR-Cas systems and briefly discuss their biotechnological applications.


Subject(s)
Archaea , Bacteria , Bacteriophages , Biotechnology , CRISPR-Cas Systems , Archaea/genetics , Archaea/virology , Bacteria/genetics , Bacteria/virology , Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Gene Editing
11.
J Mol Biol ; 435(7): 167991, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36736884

ABSTRACT

Anti-CRISPR proteins inhibit CRISPR-Cas immune systems through diverse mechanisms. Previously, the anti-CRISPR protein AcrIIC5Smu was shown to potently inhibit a type II-C Cas9 from Neisseria meningitidis (Nme1Cas9). In this work, we explore the mechanism of activity of the AcrIIC5 homologue from Neisseria chenwenguii (AcrIIC5Nch) and show that it prevents Cas9 binding to target DNA. We show that AcrIIC5Nch targets the PAM-interacting domain (PID) of Nme1Cas9 for inhibition, agreeing with previous findings for AcrIIC5Smu, and newly establish that strong binding of the anti-CRISPR requires guide RNA be pre-loaded on Cas9. We determined the crystal structure of AcrIIC5Nch using X-ray crystallography and identified amino acid residues that are critical for its function. Using a protein docking algorithm we show that AcrIIC5Nch likely occupies the Cas9 DNA binding pocket, thereby inhibiting target DNA binding through a mechanism similar to that previously described for AcrIIA2 and AcrIIA4.


Subject(s)
Bacterial Proteins , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Neisseria , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , DNA/metabolism , Protein Binding , Neisseria/genetics , Neisseria/virology
12.
ACS Nanosci Au ; 2(4): 324-332, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996437

ABSTRACT

Current urinary tract infection (UTI) diagnostic methods are slow or provide limited information, resulting in prescribing antibiotic therapy before bacterial pathogen identification. Here, we adapted a gold nanoparticle colorimetric approach and developed a smartphone platform for UTI detection. We show the parallel identification of five major UTI pathogens at clinically relevant concentrations of 105 bacteria/mL using bacteria-specific and universal probes. We validated the diagnostic technology using 115 positive and 19 negative samples from patients with Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae infections. The assay successfully identified the infecting pathogen (specificity: >98% and sensitivity: 51-73%) in 3 h. Our platform is faster than culturing and can wirelessly store and transmit results at the cost of $0.38 per assay.

13.
mBio ; 13(1): e0244121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038902

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Subject(s)
Inovirus , Superinfection , Humans , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Inovirus/metabolism , Fimbriae, Bacterial/genetics
14.
J Mol Biol ; 434(5): 167420, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954237

ABSTRACT

Phages, plasmids, and other mobile genetic elements express inhibitors of CRISPR-Cas immune systems, known as anti-CRISPR proteins, to protect themselves from targeted destruction. These anti-CRISPR proteins have been shown to function through very diverse mechanisms. In this work we investigate the activity of an anti-CRISPR isolated from a prophage in Haemophilus parainfluenzae that blocks CRISPR-Cas9 DNA cleavage activity. We determine the three-dimensional crystal structure of AcrIIC4Hpa and show that it binds to the Cas9 Recognition Domain. This binding does not prevent the Cas9-anti-CRISPR complex from interacting with target DNA but does inhibit DNA cleavage. AcrIIC4Hpa likely acts by blocking the conformational changes that allow the HNH and RuvC endonuclease domains to contact the DNA sites to be nicked.


Subject(s)
Bacteriophages , CRISPR-Associated Protein 9 , DNA Cleavage , Haemophilus parainfluenzae , Viral Proteins , Bacteriophages/enzymology , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/chemistry , Haemophilus parainfluenzae/virology , Prophages/enzymology , Protein Domains , Viral Proteins/chemistry , Viral Proteins/metabolism
15.
Cell ; 184(23): 5691-5693, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34767773

ABSTRACT

Cyclic pyrimidines cCMP and cUMP were known to be present in a variety of organisms and cell types, but their biological roles remained mysterious. Tal et al. show that bacteria use cCMP and cUMP as second messengers that function in anti-phage defense.


Subject(s)
Bacteriophages , Cyclic CMP , Nucleotides, Cyclic , Pyrimidines , Second Messenger Systems
16.
Mol Cell ; 81(3): 571-583.e6, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33412111

ABSTRACT

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophages/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing , Trans-Activators/metabolism , Viral Proteins/metabolism , Bacterial Proteins/genetics , Bacteriophages/genetics , Bacteriophages/pathogenicity , Fimbriae, Bacterial/metabolism , Host-Pathogen Interactions , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pyocyanine/metabolism , Trans-Activators/genetics , Viral Proteins/genetics
17.
J Mol Biol ; 433(3): 166759, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33338493

ABSTRACT

Anti-CRISPRs are protein inhibitors of CRISPR-Cas systems. They are produced by phages and other mobile genetic elements to evade CRISPR-Cas-mediated destruction. Anti-CRISPRs are remarkably diverse in sequence, structure, and functional mechanism; thus, structural and mechanistic investigations of anti-CRISPRs continue to yield exciting new insights. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of AcrIE2, an anti-CRISPR that inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. Guided by the structure, we used site-directed mutagenesis to identify key residues that are required for AcrIE2 function. Using affinity purification experiments, we found that AcrIE2 binds the type I-E CRISPR-Cas complex (Cascade). In vivo transcriptional assays, in which Cascade was targeted to promoter regions, demonstrated that Cascade still binds to DNA in the presence of AcrIE2. This is the first instance of a type I anti-CRISPR that binds to a CRISPR-Cas complex but does not prevent DNA-binding. Another unusual property of AcrIE2 is that the effect of Cascade:AcrIE2 complex binding to promoter regions varied depending on the position of the binding site. Most surprisingly, Cascade:AcrIE2 binding led to transcriptional activation in some cases rather than repression, which did not occur when Cascade alone bound to the same sites. We conclude that AcrIE2 operates through a distinct mechanism compared to other type I anti-CRISPRs. While AcrIE2 does not prevent Cascade from binding DNA, it likely blocks subsequent recruitment of the Cas3 nuclease to Cascade thereby preventing DNA cleavage.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/metabolism , Amino Acid Sequence , CRISPR-Associated Proteins/genetics , DNA/chemistry , DNA/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Solubility , Structure-Activity Relationship
19.
J Bacteriol ; 202(8)2020 03 26.
Article in English | MEDLINE | ID: mdl-31988081

ABSTRACT

The last gene in the genome of the bacteriophage HK97 encodes gp74, an HNH endonuclease. HNH motifs contain two conserved His residues and an invariant Asn residue, and they adopt a ßßα structure. gp74 is essential for phage head morphogenesis, likely because gp74 enhances the specific endonuclease activity of the HK97 terminase complex. Notably, the ability of gp74 to enhance the terminase-mediated cleavage of the phage cos site requires an intact HNH motif in gp74. Mutation of H82, the conserved metal-binding His residue in the HNH motif, to Ala abrogates gp74-mediated stimulation of terminase activity. Here, we present nuclear magnetic resonance (NMR) studies demonstrating that gp74 contains an α-helical insertion in the Ω-loop, which connects the two ß-strands of the ßßα fold, and a disordered C-terminal tail. NMR data indicate that the Ω-loop insert makes contacts to the ßßα fold and influences the ability of gp74 to bind divalent metal ions. Further, the Ω-loop insert and C-terminal tail contribute to gp74-mediated DNA digestion and to gp74 activity in phage morphogenesis. The data presented here enrich our molecular-level understanding of how HNH endonucleases enhance terminase-mediated digestion of the cos site and contribute to the phage replication cycle.IMPORTANCE This study demonstrates that residues outside the canonical ßßα fold, namely, the Ω-loop α-helical insert and a disordered C-terminal tail, regulate the activity of the HNH endonuclease gp74. The increased divalent metal ion binding when the Ω-loop insert is removed compared to reduced cos site digestion and phage formation indicates that the Ω-loop insert plays multiple regulatory roles. The data presented here provide insights into the molecular basis of the involvement of HNH proteins in phage DNA packing.


Subject(s)
Cations, Divalent/metabolism , Coliphages/enzymology , Endonucleases/chemistry , Endonucleases/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Coliphages/chemistry , Coliphages/genetics , Endonucleases/genetics , Protein Binding , Protein Conformation, beta-Strand , Viral Proteins/genetics
20.
Cell Rep ; 29(7): 1739-1746.e5, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722192

ABSTRACT

CRISPR-Cas9 systems provide powerful tools for genome editing. However, optimal employment of this technology will require control of Cas9 activity so that the timing, tissue specificity, and accuracy of editing may be precisely modulated. Anti-CRISPR proteins, which are small, naturally occurring inhibitors of CRISPR-Cas systems, are well suited for this purpose. A number of anti-CRISPR proteins have been shown to potently inhibit subgroups of CRISPR-Cas9 systems, but their maximal inhibitory activity is generally restricted to specific Cas9 homologs. Since Cas9 homologs vary in important properties, differing Cas9s may be optimal for particular genome-editing applications. To facilitate the practical exploitation of multiple Cas9 homologs, here we identify one anti-CRISPR, called AcrIIA5, that potently inhibits nine diverse type II-A and type II-C Cas9 homologs, including those currently used for genome editing. We show that the activity of AcrIIA5 results in partial in vivo cleavage of a single-guide RNA (sgRNA), suggesting that its mechanism involves RNA interaction.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Enzyme Inhibitors/chemistry , Gene Editing , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/chemistry , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...