Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(15): 5961-5971, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37010818

ABSTRACT

The divergent reactivity of the cationic iridium complex [(η5-C5Me5)IrCl(PMe2ArDipp2)]+ (ArDipp2 = C6H3-2,6-(C6H3-2,6-iPr2)2) toward organolithium and Grignard reagents is described. The noninnocent behavior of the Cp* ligand, a robust spectator in the majority of stoichiometric and catalytic reactions, was manifested by its unforeseen electrophilic character toward organolithium reagents LiMe, LiEt, and LinBu. In these unconventional transformations, the metal center is only indirectly involved by means of the Ir(III)/Ir(I) redox cycle. In the presence of less nucleophilic organolithium reagents, the Cp* ligand also exhibits noninnocent behavior undergoing facile deprotonation, which is also concomitant with the reduction of the metal center. In turn, the weaker alkylating agents EtMgBr and MeMgBr effectively achieve the alkylation of the metal center. These reactive iridium(III) alkyls partake in subsequent reactions: while the ethyl complex undergoes ß-H elimination, the methyl derivative releases methane by a remote C-H bond activation. Computational studies, including the quantum theory of atoms in molecules (QTAIM), support that the preferential activation of the non-benzylic C-H bonds takes place via sigma-bond metathesis.

2.
J Chem Educ ; 100(3): 1351-1356, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36920160

ABSTRACT

Chemistry and biochemistry instructors must help students to develop the ability to visualize and manipulate 3D biomolecular structures and critically analyze them and their relationship to their functions. To do this, representative systems must be strategically selected to stimulate students' motivation. Since the World Health Organization declared a global pandemic caused by a new beta-coronavirus, called SARS-CoV-2 in early 2020, huge efforts are being taken by researchers to learn in depth how this virus works and a lot of scientific results are continuously reported. Many of them focus on the structural features of the viral spike glycoprotein and their relation with the vaccine development. This paper presents a series of workouts that deep into the structural characteristics of the spike protein S SARS-CoV-2 virus and the structural features involved in its infection process, using free online resources such as the PDB and the computer program PyMOL. This type of activity is intended to engage structural biology students in examining these macromolecules and others to help establish procedures for controlling COVID-19 and other future infectious diseases. PyMOL session files and student activities are provided.

3.
Dalton Trans ; 52(12): 3835-3845, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36866716

ABSTRACT

The combination of molecular metallic fragments of contrasting Lewis character offers many possibilities for cooperative bond activation and for the disclosure of unusual reactivity. Here we provide a systematic investigation on the partnership of Lewis basic Rh(I) compounds of type [(η5-L)Rh(PR3)2] (η5-L = (C5Me5)- or (C9H7)-) with highly congested Lewis acidic Au(I) species. For the cyclopentadienyl Rh(I) compounds, we demonstrate the non-innocent role of the typically robust (C5Me5)- ligand through migration of a hydride to the Rh site and provide evidence for the direct implication of the gold fragment in this unusual bimetallic ligand activation event. This process competes with the formation of dinuclear Lewis adducts defined by a dative Rh → Au bond, with selectivity being under kinetic control and tunable by modifying the stereoelectronic and chelating properties of the phosphine ligands bound to the two metals. We provide a thorough computational study on the unusual Cp* non-innocent behavior and the divergent bimetallic pathways observed. The cooperative FLP-type reactivity of all bimetallic pairs has been investigated and computationally examined for the case of N-H bond activation in ammonia.

4.
ACS Catal ; 13(6): 3934-3948, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36970467

ABSTRACT

2-Aminobiphenyl palladacycles are among the most successful precatalysts for Pd-catalyzed cross-coupling reactions, including aryl amination. However, the role of NH-carbazole, a byproduct of precatalyst activation, remains poorly understood. Herein, the mechanism of the aryl amination reactions catalyzed by a cationic 2-aminobiphenyl palladacycle supported by a terphenyl phosphine ligand, PCyp2ArXyl2 (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl), P1, has been thoroughly investigated. Combining computational and experimental studies, we found that the Pd(II) oxidative addition intermediate reacts with NH-carbazole in the presence of the base (NaO t Bu) to yield a stable aryl carbazolyl Pd(II) complex. This species functions as the catalyst resting state, providing the amount of monoligated LPd(0) species required for catalysis and minimizing Pd decomposition. In the case of a reaction with aniline, an equilibrium between the carbazolyl complex and the on-cycle anilido analogue is established, which allows for a fast reaction at room temperature. In contrast, heating is required in a reaction with alkylamines, whose deprotonation involves coordination to the Pd center. A microkinetic model was built combining computational and experimental data to validate the mechanistic proposals. In conclusion, our study shows that despite the rate reduction observed in some reactions by the formation of the aryl carbazolyl Pd(II) complex, this species reduces catalyst decomposition and could be considered an alternative precatalyst in cross-coupling reactions.

5.
ACS Catal ; 13(24): 16055-16066, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38344669

ABSTRACT

The incorporation of boron functionalities into transition-metal catalysts has become a promising strategy to improve catalytic performance, although their synthesis typically entails the preparation of sophisticated bifunctional ligands. We report here the facile and direct postsynthetic functionalization of rhodium(I) compound [(η5-C9H7)Rh(PPh3)2] (1) by treatment with perfluorinated boranes. Borane addition to 1 results in an unusual C(sp2)-H hydride migration from the indenyl ligand to the metal with the concomitant formation of a C-B bond. In the case of Piers' borane [HB(C6F5)2], this is followed by a subsequent hydride migration that leads to an unprecedented 1,2-hydrogen shift reminiscent of Milstein's cooperative dearomatization pathways. Computational investigations provide a mechanistic picture for the successive hydride-migration steps, which enriches the non-innocent chemistry of widespread indenyl ligands. Moreover, we demonstrate that the addition of Piers' borane is highly beneficial for catalysis, increasing catalyst efficiency up to 3 orders of magnitude.

6.
Dalton Trans ; 51(41): 15734-15740, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36178081

ABSTRACT

Despite the excellent catalytic properties display by NHC-Pd-PEPPSI complexes in cross-coupling, phosphane analogs have been barely screened. In this work, we report the synthesis and characterization of a series of LPdCl2(amine) complexes bearing dialkylterphenyl phosphanes (PR2Ar') and pyridine or morpholine ligands. The novel compounds have been tested as precatalysts in aryl amination reactions. The complex [(PCyp2ArXyl2)PdCl2(morpholine)] shows the best catalytic activity allowing the room-temperature coupling of aryl bromides and chlorides with aniline.

7.
Dalton Trans ; 51(15): 5777-5781, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35352740

ABSTRACT

Pt(II) alkylidene 1a has been reacted with terminal alkynes to afford ylide complexes 3a-d, resulting from electrophilic activation of the CC bond and its insertion into the platinacyclic fragment of 1a that contains the carbene functionality. DFT calculations indicate that the observed regioselectivity is determined by the nucleophilic attack of the alkyne to the alkylidene carbon.

8.
Organometallics ; 40(8): 1113-1119, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34602699

ABSTRACT

Metal-only Lewis pairs (MOLPs) based on zinc electrophiles are particularly interesting due to their relevance to Negishi cross-coupling reactions. Zinc-based ligands in bimetallic complexes also render unique reactivity to the transition metals at which they are bound. Here we explore the use of sterically hindered [Pt(P t Bu3)2] (1) to access Pt/Zn bimetallic complexes. Compounds [(P t Bu3)2Pt → Zn(C6F5)2] (2) and [Pt(ZnCp*)6] (3) (Cp* = pentamethylcyclopentadienyl) were isolated by reactions with Zn(C6F5)2 and [Zn2Cp*2], respectively. We also disclose the cooperative reactivity of 1/ZnX2 pairs (X = Cl, Br, I, and OTf) toward water and dihydrogen, which can be understood in terms of bimetallic frustration.

9.
Chemistry ; 27(48): 12320-12326, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34191385

ABSTRACT

Ni-catalyzed C-S cross-coupling reactions have received less attention compared with other C-heteroatom couplings. Most reported examples comprise the thioetherification of most reactive aryl iodides with aromatic thiols. The use of C-O electrophiles in this context is almost uncharted. Here, we describe that preformed Ni(II) precatalysts of the type NiCl(allyl)(PMe2 Ar') (Ar'=terphenyl group) efficiently couple a wide range of (hetero)aryl halides, including challenging aryl chlorides, with a variety of aromatic and aliphatic thiols. Aryl and alkenyl tosylates are also well tolerated, demonstrating, for the first time, to be competent electrophilic partners in Ni-catalyzed C-S bond formation. The chemoselective functionalization of the C-I bond in the presence of a C-Cl bond allows for designing site-selective tandem C-S/C-N couplings. The formation of the two C-heteroatom bonds takes place in a single operation and represents a rare example of dual electrophile/nucleophile chemoselective process.


Subject(s)
Chlorides , Iodides , Catalysis , Sulfhydryl Compounds
10.
J Am Chem Soc ; 143(13): 5222-5230, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33755447

ABSTRACT

The reactions of LiAlH4 as the source of LiH with complexes that contain (H)Mo≣Mo and (H)Mo≣Mo(H) cores stabilized by the coordination of bulky AdDipp2 ligands result in the respective coordination of one and two molecules of (thf)LiH, with the generation of complexes exhibiting one and two HLi(thf)H ligands extending across the Mo≣Mo bond (AdDipp2 = HC(NDipp)2; Dipp = 2,6-iPr2C6H3; thf = tetrahydrofuran, C4H8O). A theoretical study reveals the formation of Mo-H-Li three-center-two-electron bonds, supplemented by the coordination of the Mo≣Mo bond to the Li ion. Attempts to construct a [Mo2{HLi(thf)H}3(AdDipp2)] molecular architecture led to spontaneous trimerization and the formation of a chiral, hydride-rich Mo6Li9H18 supramolecular organization that is robust enough to withstand the substitution of lithium-solvating molecules of tetrahydrofuran by pyridine or 4-dimethylaminopyridine.

11.
Chem Commun (Camb) ; 57(25): 3083-3086, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33656041

ABSTRACT

Bulky terphenyl phosphane ligands PMe2Ar' (Ar' = terphenyl group) facilitate the isolation of zero-valent bis-phosphane complexes of nickel, palladium and platinum. The former show coordination numbers greater than two in the solid state due to the existence of Ni-Carene interactions with the terphenyl fragment.

12.
Chemistry ; 27(21): 6569-6578, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33469945

ABSTRACT

This contribution focuses on complex [Mo2 (H)2 (µ-AdDipp2 )2 ] (1) and tetrahydrofuran and pyridine adducts [Mo2 (H)2 (µ-AdDipp2 )2 (L)2 ] (1⋅thf and 1⋅py), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2 =HC(NDipp2 )2 ; Dipp=2,6-iPr2 C6 H3 ). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2 H2 unit of 1, with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3 , can bind to 1, causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond (2⋅PMe3 ). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo-H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2 , to afford a monohydride [Mo2 (µ-H)(µ-NTf2 )(µ-AdDipp2 )2 ] (4), with an O,O'-bridging triflimidate ligand.

13.
Organometallics ; 39(13): 2534-2544, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-33281270

ABSTRACT

Introducing transition metals into frustrated Lewis pair systems has attracted considerable attention in recent years. Here we report a selection of three metal-only frustrated systems based on Au(I)/Pt(0) combinations and their reactivity toward alkynes. We have inspected the activation of acetylene and phenylacetylene. The gold(I) fragments are stabilized by three bulky phosphines bearing terphenyl groups. We have observed that subtle modifications on the substituents of these ligands proved critical in controlling the regioselectivity of acetylene activation and the product distribution resulting from C(sp)-H cleavage of phenylacetylene. A mechanistic picture based on experimental observations and computational analysis is provided. As a result of the cooperative action of the two metals of the frustrated pairs, several uncommon heterobimetallic structures have been characterized.

14.
Inorg Chem ; 59(15): 10894-10906, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32691590

ABSTRACT

Several dinuclear terphenyl phosphine copper(I) halide complexes of composition [CuX(PR2Ar')]2 (X = Cl, Br, I; R = hydrocarbyl, Ar' = 2,6-diarylterphenyl radical), 1-5, have been isolated from the reaction of CuX with 1 equiv of the phosphine ligand. Most of them have been characterized by X-ray diffraction studies in the solid state, thus allowing comparative discussions of different structural parameters, namely, Cu···Cu and Cu···Aryl separations, conformations adopted by coordinated phosphines, and planarity of the Cu2X2 cores. Centrosymmetric complexes [CuI(PMe2ArXyl2)]2, 1c, and [CuI(PEt2ArMes2)]2, 3c, despite their similar structures, show very distinct photoluminescence (PL) in powder form at room temperature. The photophysical behavior of these compounds in liquid solution, solid-solid Zeonex solution and powder samples at room temperature and 77 K have been investigated and supported by DFT calculation. Identification of vibronic coupling modes, done by group theory calculations and the technique of projection operators, shows that the manifestation of these modes is conditioned by crystal packing. Complexes [CuI(PMe2ArXyl2)]2, 1c, and [CuI(PEt2ArMes2)]2, 3c, display remarkable activity in copper-catalyzed azide-alkyne cycloaddition reactions involving preformed and in situ-made azides. Reactions are performed in H2O, under aerobic conditions, with low catalyst loadings and tolerate the use of iodoalkynes as substrates.

15.
Chemistry ; 26(27): 5915, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32301183

ABSTRACT

Invited for the cover of this issue is the group of Joaquín López-Serrano and Jesús Campos at the Consejo Superior de Investigaciones Científicas and the University of Sevilla. The image depicts the importance of balancing the degree of frustration/interaction in the splitting of H2 by AuI /Pt0 . Read the full text of the article at 10.1002/chem.201905793.

16.
Molecules ; 25(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013217

ABSTRACT

A straightforward method for the preparation of trisphosphinite ligands in one step, using only commercially available reagents (1,1,1-tris(4-hydroxyphenyl)ethane and chlorophosphines) is described. We have made use of this approach to prepare a small family of four trisphosphinite ligands of formula [CH3C{(C6H4OR2)3], where R stands for Ph (1a), Xyl (1b, Xyl = 2,6-Me2-C6H3), iPr (1c), and Cy (1d). These polyfunctional phosphinites allowed us to investigate their coordination chemistry towards a range of late transition metal precursors. As such, we report here the isolation and full characterization of a number of Au(I), Ag(I), Cu(I), Ir(III), Rh(III) and Ru(II) homotrimetallic complexes, including the structural characterization by X-ray diffraction studies of six of these compounds. We have observed that the flexibility of these trisphosphinites enables a variety of conformations for the different trimetallic species.


Subject(s)
Organometallic Compounds/chemistry , Indicators and Reagents/chemistry , Ligands , Models, Molecular , Phosphines/chemistry , X-Ray Diffraction
17.
Chemistry ; 26(27): 5982-5993, 2020 May 12.
Article in English | MEDLINE | ID: mdl-31971290

ABSTRACT

A joint experimental/computational effort to elucidate the mechanism of dihydrogen activation by a gold(I)/platinum(0) metal-only frustrated Lewis pair (FLP) is described herein. The drastic effects on H2 activation derived from subtle ligand modifications have also been investigated. The importance of the balance between bimetallic adduct formation and complete frustration has been interrogated, providing for the first time evidence for genuine metal-only FLP reactivity in solution. The origin of a strong inverse kinetic isotopic effect has also been clarified, offering further support for the proposed bimetallic FLP-type cleavage of dihydrogen.

18.
Chemistry ; 26(5): 1064-1073, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31743505

ABSTRACT

A series of 2-aminobiphenyl palladacycles supported by dialkylterphenyl phosphines, PR2 Ar' (R=Me, Et, iPr, Cyp (cyclopentyl), Ar'=ArDipp2 , ArXyl2f , Dipp (2,6-C6H3-(2,6-C6H3-(CHMe2)2)2), Xyl=xylyl) have been prepared and structurally characterized. Neutral palladacycles were obtained with less bulky terphenyl phosphines (i.e., Me and Et substituents) whereas the largest phosphines provided cationic palladacycles in which the phosphines adopted a bidentate hemilabile k1 -P,η1 -Carene coordination mode. The influence of the ligand structure on the catalytic performance of these Pd precatalysts was evaluated in aryl amination reactions. Cationic complexes bearing the phosphines PiPr2 ArXyl2 and PCyp2 ArXyl2 were the most active of the series. These precatalysts have demonstrated a high versatility and efficiency in the coupling of a variety of nitrogen nucleophiles, including secondary amines, alkyl amines, anilines, and indoles, with electronically deactivated and ortho-substituted aryl chlorides at low catalyst loadings (0.25-0.75 mol % Pd) and without excess ligand.

19.
Dalton Trans ; 48(39): 14575-14579, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31498356

ABSTRACT

Aryl-Pd(ii) chlorides stabilized by dialkylterphenyl phosphine ligands undergo a thermal isomerization process, leading to the formation of allyl-Pd(ii)-chloride species. The transformation involves the intramolecular functionalization of a C-H bond of the terphenyl group mediated by the Pd(ii) center.

20.
Chem Commun (Camb) ; 55(60): 8812-8815, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31120065

ABSTRACT

Metal-only Lewis pairs made of Pt(0)/Ag(i) combinations have been previously reported, but their cooperative reactivity remains unexplored. Here we demonstrate that these systems are capable of synergistically activating a wide variety of X-H (X = H, C, O, N) bonds, including those in dihydrogen, alkynes, water and ammonia.

SELECTION OF CITATIONS
SEARCH DETAIL