Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JAMA Netw Open ; 7(8): e2425765, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39102267

ABSTRACT

Importance: Traumatic brain injury (TBI) is a leading cause of death and disability in children, and predicting functional outcome after TBI is challenging. Magnetic resonance imaging (MRI) is frequently conducted after severe TBI; however, the predictive value of MRI remains uncertain. Objectives: To identify early MRI measures that predict long-term outcome after severe TBI in children and to assess the added predictive value of MRI measures over well-validated clinical predictors. Design, Setting, and Participants: This preplanned prognostic study used data from the Approaches and Decisions in Acute Pediatric TBI (ADAPT) prospective observational comparative effectiveness study. The ADAPT study enrolled 1000 consecutive children (aged <18 years) with severe TBI between February 1, 2014, and September 30, 2017. Participants had a Glasgow Coma Scale (GCS) score of 8 or less and received intracranial pressure monitoring. Magnetic resonance imaging scans performed as part of standard clinical care within 30 days of injury were collected at 24 participating sites in the US, UK, and Australia. Summary imaging measures were correlated with the Glasgow Outcome Scale-Extended for Pediatrics (GOSE-Peds), and the predictive value of MRI measures was compared with the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) core clinical predictors. Data collection, image analysis, and data analyses were completed in July 2023. Exposures: Pediatric severe TBI with an MRI scan performed as part of clinical care. Main Outcomes and Measures: All measures were selected a priori. Magnetic resonance imaging measures included contusion, ischemia, diffuse axonal injury, intracerebral hemorrhage, and brainstem injury. Clinical predictors included the IMPACT core measures (GCS motor score and pupil reactivity). All models adjusted for age and sex. Outcome measures included the GOSE-Peds score obtained at 3, 6, and 12 months after injury. Results: This study included 233 children with severe TBI who were enrolled at participating sites and had an MRI scan and preselected clinical predictors available. Their median age was 6.9 (IQR, 3.0-13.3) years, and more than half of participants (134 [57.5%]) were male. In a multivariable model including MRI measures and IMPACT core clinical variables, contusion volume (odds ratio [OR], 1.13; 95% CI, 1.02-1.26), brain ischemia (OR, 2.11; 95% CI, 1.58-2.81), brainstem lesions (OR, 5.40; 95% CI, 1.90-15.35), and pupil reactivity were each independently associated with GOSE-Peds score. Adding MRI measures to the IMPACT clinical predictors significantly improved model fit and discrimination between favorable and unfavorable outcomes compared with IMPACT predictors alone (area under the receiver operating characteristic curve, 0.77; 95% CI, 0.72-0.85 vs 0.67; 95% CI, 0.61-0.76 for GOSE-Peds score >3 at 6 months after injury). Conclusions and Relevance: In this prognostic study of children with severe TBI, the addition of MRI measures significantly improved outcome prediction over well-established and validated clinical predictors. Magnetic resonance imaging should be considered in children with severe TBI to inform prognosis and may also promote stratification of patients in future clinical trials.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Humans , Child , Brain Injuries, Traumatic/diagnostic imaging , Female , Male , Magnetic Resonance Imaging/methods , Adolescent , Prospective Studies , Prognosis , Child, Preschool , Predictive Value of Tests , Glasgow Coma Scale , Australia , Glasgow Outcome Scale , Infant , United States , United Kingdom
2.
BMC Emerg Med ; 24(1): 110, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982351

ABSTRACT

BACKGROUND: Substance misuse poses a significant public health challenge, characterized by premature morbidity and mortality, and heightened healthcare utilization. While studies have demonstrated that previous hospitalizations and emergency department visits are associated with increased mortality in patients with substance misuse, it is unknown whether prior utilization of emergency medical service (EMS) is similarly associated with poor outcomes among this population. The objective of this study is to determine the association between EMS utilization in the 30 days before a hospitalization or emergency department visit and in-hospital outcomes among patients with substance misuse. METHODS: We conducted a retrospective analysis of adult emergency department visits and hospitalizations (referred to as a hospital encounter) between 2017 and 2021 within the Substance Misuse Data Commons, which maintains electronic health records from substance misuse patients seen at two University of Wisconsin hospitals, linked with state agency, claims, and socioeconomic datasets. Using regression models, we examined the association between EMS use and the outcomes of in-hospital death, hospital length of stay, intensive care unit (ICU) admission, and critical illness events, defined by invasive mechanical ventilation or vasoactive drug administration. Models were adjusted for age, comorbidities, initial severity of illness, substance misuse type, and socioeconomic status. RESULTS: Among 19,402 encounters, individuals with substance misuse who had at least one EMS incident within 30 days of a hospital encounter experienced a higher likelihood of in-hospital mortality (OR 1.52, 95% CI [1.05 - 2.14]) compared to those without prior EMS use, after adjusting for confounders. Using EMS in the 30 days prior to an encounter was associated with a small increase in hospital length of stay but was not associated with ICU admission or critical illness events. CONCLUSIONS: Individuals with substance misuse who have used EMS in the month preceding a hospital encounter are at an increased risk of in-hospital mortality. Enhanced monitoring of EMS users in this population could improve overall patient outcomes.


Subject(s)
Emergency Medical Services , Hospital Mortality , Substance-Related Disorders , Humans , Retrospective Studies , Male , Female , Middle Aged , Adult , Risk Factors , Emergency Medical Services/statistics & numerical data , Wisconsin/epidemiology , Length of Stay/statistics & numerical data , Aged
3.
medRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38562730

ABSTRACT

In the evolving landscape of clinical Natural Language Generation (NLG), assessing abstractive text quality remains challenging, as existing methods often overlook generative task complexities. This work aimed to examine the current state of automated evaluation metrics in NLG in healthcare. To have a robust and well-validated baseline with which to examine the alignment of these metrics, we created a comprehensive human evaluation framework. Employing ChatGPT-3.5-turbo generative output, we correlated human judgments with each metric. None of the metrics demonstrated high alignment; however, the SapBERT score-a Unified Medical Language System (UMLS)- showed the best results. This underscores the importance of incorporating domain-specific knowledge into evaluation efforts. Our work reveals the deficiency in quality evaluations for generated text and introduces our comprehensive human evaluation framework as a baseline. Future efforts should prioritize integrating medical knowledge databases to enhance the alignment of automated metrics, particularly focusing on refining the SapBERT score for improved assessments.

4.
J Am Med Inform Assoc ; 31(6): 1291-1302, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38587875

ABSTRACT

OBJECTIVE: The timely stratification of trauma injury severity can enhance the quality of trauma care but it requires intense manual annotation from certified trauma coders. The objective of this study is to develop machine learning models for the stratification of trauma injury severity across various body regions using clinical text and structured electronic health records (EHRs) data. MATERIALS AND METHODS: Our study utilized clinical documents and structured EHR variables linked with the trauma registry data to create 2 machine learning models with different approaches to representing text. The first one fuses concept unique identifiers (CUIs) extracted from free text with structured EHR variables, while the second one integrates free text with structured EHR variables. Temporal validation was undertaken to ensure the models' temporal generalizability. Additionally, analyses to assess the variable importance were conducted. RESULTS: Both models demonstrated impressive performance in categorizing leg injuries, achieving high accuracy with macro-F1 scores of over 0.8. Additionally, they showed considerable accuracy, with macro-F1 scores exceeding or near 0.7, in assessing injuries in the areas of the chest and head. We showed in our variable importance analysis that the most important features in the model have strong face validity in determining clinically relevant trauma injuries. DISCUSSION: The CUI-based model achieves comparable performance, if not higher, compared to the free-text-based model, with reduced complexity. Furthermore, integrating structured EHR data improves performance, particularly when the text modalities are insufficiently indicative. CONCLUSIONS: Our multi-modal, multiclass models can provide accurate stratification of trauma injury severity and clinically relevant interpretations.


Subject(s)
Electronic Health Records , Machine Learning , Wounds and Injuries , Humans , Wounds and Injuries/classification , Injury Severity Score , Registries , Trauma Severity Indices , Natural Language Processing
5.
J Am Med Inform Assoc ; 31(6): 1322-1330, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38679906

ABSTRACT

OBJECTIVES: To compare and externally validate popular deep learning model architectures and data transformation methods for variable-length time series data in 3 clinical tasks (clinical deterioration, severe acute kidney injury [AKI], and suspected infection). MATERIALS AND METHODS: This multicenter retrospective study included admissions at 2 medical centers that spanned 2007-2022. Distinct datasets were created for each clinical task, with 1 site used for training and the other for testing. Three feature engineering methods (normalization, standardization, and piece-wise linear encoding with decision trees [PLE-DTs]) and 3 architectures (long short-term memory/gated recurrent unit [LSTM/GRU], temporal convolutional network, and time-distributed wrapper with convolutional neural network [TDW-CNN]) were compared in each clinical task. Model discrimination was evaluated using the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). RESULTS: The study comprised 373 825 admissions for training and 256 128 admissions for testing. LSTM/GRU models tied with TDW-CNN models with both obtaining the highest mean AUPRC in 2 tasks, and LSTM/GRU had the highest mean AUROC across all tasks (deterioration: 0.81, AKI: 0.92, infection: 0.87). PLE-DT with LSTM/GRU achieved the highest AUPRC in all tasks. DISCUSSION: When externally validated in 3 clinical tasks, the LSTM/GRU model architecture with PLE-DT transformed data demonstrated the highest AUPRC in all tasks. Multiple models achieved similar performance when evaluated using AUROC. CONCLUSION: The LSTM architecture performs as well or better than some newer architectures, and PLE-DT may enhance the AUPRC in variable-length time series data for predicting clinical outcomes during external validation.


Subject(s)
Deep Learning , Female , Humans , Male , Middle Aged , Acute Kidney Injury , Datasets as Topic , Neural Networks, Computer , Retrospective Studies , ROC Curve
6.
Crit Care Explor ; 6(3): e1066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505174

ABSTRACT

OBJECTIVES: Alcohol withdrawal syndrome (AWS) may progress to require high-intensity care. Approaches to identify hospitalized patients with AWS who received higher level of care have not been previously examined. This study aimed to examine the utility of Clinical Institute Withdrawal Assessment Alcohol Revised (CIWA-Ar) for alcohol scale scores and medication doses for alcohol withdrawal management in identifying patients who received high-intensity care. DESIGN: A multicenter observational cohort study of hospitalized adults with alcohol withdrawal. SETTING: University of Chicago Medical Center and University of Wisconsin Hospital. PATIENTS: Inpatient encounters between November 2008 and February 2022 with a CIWA-Ar score greater than 0 and benzodiazepine or barbiturate administered within the first 24 hours. The primary composite outcome was patients who progressed to high-intensity care (intermediate care or ICU). INTERVENTIONS: None. MAIN RESULTS: Among the 8742 patients included in the study, 37.5% (n = 3280) progressed to high-intensity care. The odds ratio for the composite outcome increased above 1.0 when the CIWA-Ar score was 24. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) at this threshold were 0.12 (95% CI, 0.11-0.13), 0.95 (95% CI, 0.94-0.95), 0.58 (95% CI, 0.54-0.61), and 0.64 (95% CI, 0.63-0.65), respectively. The OR increased above 1.0 at a 24-hour lorazepam milligram equivalent dose cutoff of 15 mg. The sensitivity, specificity, PPV, and NPV at this threshold were 0.16 (95% CI, 0.14-0.17), 0.96 (95% CI, 0.95-0.96), 0.68 (95% CI, 0.65-0.72), and 0.65 (95% CI, 0.64-0.66), respectively. CONCLUSIONS: Neither CIWA-Ar scores nor medication dose cutoff points were effective measures for identifying patients with alcohol withdrawal who received high-intensity care. Research studies for examining outcomes in patients who deteriorate with AWS will require better methods for cohort identification.

7.
JAMA ; 331(6): 500-509, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38349372

ABSTRACT

Importance: The US heart allocation system prioritizes medically urgent candidates with a high risk of dying without transplant. The current therapy-based 6-status system is susceptible to manipulation and has limited rank ordering ability. Objective: To develop and validate a candidate risk score that incorporates current clinical, laboratory, and hemodynamic data. Design, Setting, and Participants: A registry-based observational study of adult heart transplant candidates (aged ≥18 years) from the US heart allocation system listed between January 1, 2019, and December 31, 2022, split by center into training (70%) and test (30%) datasets. Adult candidates were listed between January 1, 2019, and December 31, 2022. Main Outcomes and Measures: A US candidate risk score (US-CRS) model was developed by adding a predefined set of predictors to the current French Candidate Risk Score (French-CRS) model. Sensitivity analyses were performed, which included intra-aortic balloon pumps (IABP) and percutaneous ventricular assist devices (VAD) in the definition of short-term mechanical circulatory support (MCS) for the US-CRS. Performance of the US-CRS model, French-CRS model, and 6-status model in the test dataset was evaluated by time-dependent area under the receiver operating characteristic curve (AUC) for death without transplant within 6 weeks and overall survival concordance (c-index) with integrated AUC. Results: A total of 16 905 adult heart transplant candidates were listed (mean [SD] age, 53 [13] years; 73% male; 58% White); 796 patients (4.7%) died without a transplant. The final US-CRS contained time-varying short-term MCS (ventricular assist-extracorporeal membrane oxygenation or temporary surgical VAD), the log of bilirubin, estimated glomerular filtration rate, the log of B-type natriuretic peptide, albumin, sodium, and durable left ventricular assist device. In the test dataset, the AUC for death within 6 weeks of listing for the US-CRS model was 0.79 (95% CI, 0.75-0.83), for the French-CRS model was 0.72 (95% CI, 0.67-0.76), and 6-status model was 0.68 (95% CI, 0.62-0.73). Overall c-index for the US-CRS model was 0.76 (95% CI, 0.73-0.80), for the French-CRS model was 0.69 (95% CI, 0.65-0.73), and 6-status model was 0.67 (95% CI, 0.63-0.71). Classifying IABP and percutaneous VAD as short-term MCS reduced the effect size by 54%. Conclusions and Relevance: In this registry-based study of US heart transplant candidates, a continuous multivariable allocation score outperformed the 6-status system in rank ordering heart transplant candidates by medical urgency and may be useful for the medical urgency component of heart allocation.


Subject(s)
Heart Failure , Heart Transplantation , Tissue and Organ Procurement , Adult , Female , Humans , Male , Middle Aged , Bilirubin , Clinical Laboratory Services , Heart , Risk Factors , Risk Assessment , Heart Failure/mortality , Heart Failure/surgery , United States , Health Care Rationing/methods , Predictive Value of Tests , Tissue and Organ Procurement/methods , Tissue and Organ Procurement/organization & administration
8.
Resusc Plus ; 17: 100540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38260119

ABSTRACT

Background and Objective: The Children's Early Warning Tool (CEWT), developed in Australia, is widely used in many countries to monitor the risk of deterioration in hospitalized children. Our objective was to compare CEWT prediction performance against a version of the Bedside Pediatric Early Warning Score (Bedside PEWS), Between the Flags (BTF), and the pediatric Calculated Assessment of Risk and Triage (pCART). Methods: We conducted a retrospective observational study of all patient admissions to the Comer Children's Hospital at the University of Chicago between 2009-2019. We compared performance for predicting the primary outcome of a direct ward-to-intensive care unit (ICU) transfer within the next 12 h using the area under the receiver operating characteristic curve (AUC). Alert rates at various score thresholds were also compared. Results: Of 50,815 ward admissions, 1,874 (3.7%) experienced the primary outcome. Among patients in Cohort 1 (years 2009-2017, on which the machine learning-based pCART was trained), CEWT performed slightly worse than Bedside PEWS but better than BTF (CEWT AUC 0.74 vs. Bedside PEWS 0.76, P < 0.001; vs. BTF 0.66, P < 0.001), while pCART performed best for patients in Cohort 2 (years 2018-2019, pCART AUC 0.84 vs. CEWT AUC 0.79, P < 0.001; vs. BTF AUC 0.67, P < 0.001; vs. Bedside PEWS 0.80, P < 0.001). Sensitivity, specificity, and positive predictive values varied across all four tools at the examined thresholds for alerts. Conclusion: CEWT has good discrimination for predicting which patients will likely be transferred to the ICU, while pCART performed the best.

9.
JAMIA Open ; 6(4): ooad109, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144168

ABSTRACT

Objectives: To develop and externally validate machine learning models using structured and unstructured electronic health record data to predict postoperative acute kidney injury (AKI) across inpatient settings. Materials and Methods: Data for adult postoperative admissions to the Loyola University Medical Center (2009-2017) were used for model development and admissions to the University of Wisconsin-Madison (2009-2020) were used for validation. Structured features included demographics, vital signs, laboratory results, and nurse-documented scores. Unstructured text from clinical notes were converted into concept unique identifiers (CUIs) using the clinical Text Analysis and Knowledge Extraction System. The primary outcome was the development of Kidney Disease Improvement Global Outcomes stage 2 AKI within 7 days after leaving the operating room. We derived unimodal extreme gradient boosting machines (XGBoost) and elastic net logistic regression (GLMNET) models using structured-only data and multimodal models combining structured data with CUI features. Model comparison was performed using the receiver operating characteristic curve (AUROC), with Delong's test for statistical differences. Results: The study cohort included 138 389 adult patient admissions (mean [SD] age 58 [16] years; 11 506 [8%] African-American; and 70 826 [51%] female) across the 2 sites. Of those, 2959 (2.1%) developed stage 2 AKI or higher. Across all data types, XGBoost outperformed GLMNET (mean AUROC 0.81 [95% confidence interval (CI), 0.80-0.82] vs 0.78 [95% CI, 0.77-0.79]). The multimodal XGBoost model incorporating CUIs parameterized as term frequency-inverse document frequency (TF-IDF) showed the highest discrimination performance (AUROC 0.82 [95% CI, 0.81-0.83]) over unimodal models (AUROC 0.79 [95% CI, 0.78-0.80]). Discussion: A multimodality approach with structured data and TF-IDF weighting of CUIs increased model performance over structured data-only models. Conclusion: These findings highlight the predictive power of CUIs when merged with structured data for clinical prediction models, which may improve the detection of postoperative AKI.

10.
Front Pediatr ; 11: 1284672, 2023.
Article in English | MEDLINE | ID: mdl-38188917

ABSTRACT

Introduction: Critical deterioration in hospitalized children, defined as ward to pediatric intensive care unit (PICU) transfer followed by mechanical ventilation (MV) or vasoactive infusion (VI) within 12 h, has been used as a primary metric to evaluate the effectiveness of clinical interventions or quality improvement initiatives. We explore the association between critical events (CEs), i.e., MV or VI events, within the first 48 h of PICU transfer from the ward or emergency department (ED) and in-hospital mortality. Methods: We conducted a retrospective study of a cohort of PICU transfers from the ward or the ED at two tertiary-care academic hospitals. We determined the association between mortality and occurrence of CEs within 48 h of PICU transfer after adjusting for age, gender, hospital, and prior comorbidities. Results: Experiencing a CE within 48 h of PICU transfer was associated with an increased risk of mortality [OR 12.40 (95% CI: 8.12-19.23, P < 0.05)]. The increased risk of mortality was highest in the first 12 h [OR 11.32 (95% CI: 7.51-17.15, P < 0.05)] but persisted in the 12-48 h time interval [OR 2.84 (95% CI: 1.40-5.22, P < 0.05)]. Varying levels of risk were observed when considering ED or ward transfers only, when considering different age groups, and when considering individual 12-h time intervals. Discussion: We demonstrate that occurrence of a CE within 48 h of PICU transfer was associated with mortality after adjusting for confounders. Studies focusing on the impact of quality improvement efforts may benefit from using CEs within 48 h of PICU transfer as an additional evaluation metric, provided these events could have been influenced by the initiative.

SELECTION OF CITATIONS
SEARCH DETAIL