Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Invest Radiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38896439

ABSTRACT

OBJECTIVES: The aim of this study was to determine whether MRI radiomic features of key cerebral structures differ between women and men, and whether detection of such differences depends on the image resolution. MATERIALS AND METHODS: Ultrahigh resolution (UHR) 3D MP2RAGE (magnetization-prepared 2 rapid acquisition gradient echo) T1-weighted MR images (voxel size, 0.7 × 0.7 × 0.7 mm3) of the brain of 30 subjects (18 women and 12 men; mean age, 39.0 ± 14.8 years) without abnormal findings on MRI were retrospectively included. MRI was performed on a whole-body 7 T MR system. A convolutional neural network was used to segment the following structures: frontal cortex, frontal white matter, thalamus, putamen, globus pallidus, caudate nucleus, and corpus callosum. Eighty-seven radiomic features were extracted respectively: gray-level histogram (n = 18), co-occurrence matrix (n = 24), run-length matrix (n = 16), size-zone matrix (n = 16), and dependence matrix (n = 13). Feature extraction was performed at UHR and, additionally, also after resampling to 1.4 × 1.4 × 1.4 mm3 voxel size (standard clinical resolution). Principal components (PCs) of radiomic features were calculated, and independent samples t tests with Cohen d as effect size measure were used to assess differences in PCs between women and men for the different cerebral structures. RESULTS: At UHR, at least a single PC differed significantly between women and men in 6/7 cerebral structures: frontal cortex (d = -0.79, P = 0.042 and d = -1.01, P = 0.010), frontal white matter (d = -0.81, P = 0.039), thalamus (d = 1.43, P < 0.001), globus pallidus (d = 0.92, P = 0.020), caudate nucleus (d = -0.83, P = 0.039), and corpus callosum (d = -0.97, P = 0.039). At standard clinical resolution, only a single PC extracted from the corpus callosum differed between sexes (d = 1.05, P = 0.009). CONCLUSIONS: Nonnegligible differences in radiomic features of several key structures of the brain exist between women and men, and need to be accounted for. Very high spatial resolution may be required to uncover and further investigate the sexual dimorphism of brain structures on MRI.

2.
J Hematol Oncol ; 17(1): 21, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649972

ABSTRACT

Relapse and toxicity limit the effectiveness of chimeric antigen receptor T-cell (CAR-T) therapy for large B-cell lymphoma (LBCL), yet biomarkers that predict outcomes and toxicity are lacking. We examined radiomic features extracted from pre-CAR-T 18F-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) scans (n = 341) of 180 patients (121 male; median age, 66 years). Three conventional (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], total lesion glycolysis [TLG]) and 116 novel radiomic features were assessed, along with inflammatory markers, toxicities, and outcomes. At both pre-apheresis and pre-infusion time points, conventional PET features of disease correlated with elevated inflammatory markers. At pre-infusion, MTV was associated with grade ≥ 2 cytokine release syndrome (odds ratio [OR] for 100 mL increase: 1.08 [95% confidence interval (CI), 1.01-1.20], P = 0.031), and SUVmax was associated with failure to achieve complete response (CR) (OR 1.72 [95% CI, 1.24-2.43], P < 0.001). Higher pre-apheresis and pre-infusion MTV values were associated with shorter progression-free survival (PFS) (HR for 10-unit increase: 1.11 [95% CI, 1.05-1.17], P < 0.001; 1.04 [95% CI, 1.02-1.07], P < 0.001) and shorter overall survival (HR for 100-unit increase: 1.14 [95% CI, 1.07-1.21], P < 0.001; 1.04 [95% CI, 1.02-1.06], P < 0.001). A combined MTV and LDH measure stratified patients into high and low PFS risk groups. Multiple pre-infusion novel radiomic features were associated with CR. These quantitative conventional [18F]FDG PET/CT features obtained before CAR-T cell infusion, which were correlated with inflammation markers, may provide prognostic biomarkers for CAR-T therapy efficacy and toxicity. The use of conventional and novel radiomic features may thus help identify high-risk patients for earlier interventions.


Subject(s)
Fluorodeoxyglucose F18 , Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Positron Emission Tomography Computed Tomography/methods , Aged , Immunotherapy, Adoptive/methods , Middle Aged , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Adult , Treatment Outcome , Aged, 80 and over , Radiopharmaceuticals , Prognosis , Retrospective Studies
3.
Endocr Relat Cancer ; 31(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38214923

ABSTRACT

The chemotherapy regimen capecitabine/temozolomide (CAPTEM) is routinely used in neuroendocrine tumors (NET), with antitumor activity particularly demonstrated in pancreatic or high-grade neuroendocrine neoplasms (NEN). However, different dosing regimens are used, and the optimal schedule remains to be defined. This single-center retrospective analysis assessed the efficacy and safety of CAPTEM in patients with NEN using a schedule starting both compounds simultaneously (temozolomide on days 1-5 and capecitabine on days 1-14 of a 28-day cycle) rather than sequentially. The primary parameters of interest were response rates, progression-free survival (PFS), and toxicities following this treatment regimen, hereinafter referred to as TEMCAP. The study population comprised 40 patients, half of whom (n = 20) had pancreatic NEN, and 9 patients (22.5%) had pulmonary or thymic NETs. The most common histology was NET G3 (n = 15, 37.5%), and 8 patients (20.0%) had a neuroendocrine carcinoma (NEC). Most patients (77.5%) had at least one prior systemic therapy, and 16 patients (40.0%) prior chemotherapy. The median number of TEMCAP cycles was 6 (range 1-16). Median PFS for the highly heterogeneous population was 13.3 months, while the median overall survival was 31.9 months. In total, 14/36 patients (38.9%) exhibited a partial response, and the disease control rate was 75.0%. The safety profile of TEMCAP (at a below-target mean temozolomide dose of 118.85 mg/m2) in our cohort was remarkably good with no toxicities of grade 3 or 4. Taken together, the results of this analysis further support the use of temozolomide/capecitabine in NEN and prompt further assessment of our modified TEMCAP schedule.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Temozolomide/therapeutic use , Capecitabine/therapeutic use , Capecitabine/adverse effects , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Treatment Outcome
4.
Eur Radiol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206405

ABSTRACT

OBJECTIVES: To assess radiologists' current use of, and opinions on, structured reporting (SR) in oncologic imaging, and to provide recommendations for a structured report template. MATERIALS AND METHODS: An online survey with 28 questions was sent to European Society of Oncologic Imaging (ESOI) members. The questionnaire had four main parts: (1) participant information, e.g., country, workplace, experience, and current SR use; (2) SR design, e.g., numbers of sections and fields, and template use; (3) clinical impact of SR, e.g., on report quality and length, workload, and communication with clinicians; and (4) preferences for an oncology-focused structured CT report. Data analysis comprised descriptive statistics, chi-square tests, and Spearman correlation coefficients. RESULTS: A total of 200 radiologists from 51 countries completed the survey: 57.0% currently utilized SR (57%), with a lower proportion within than outside of Europe (51.0 vs. 72.7%; p = 0.006). Among SR users, the majority observed markedly increased report quality (62.3%) and easier comparison to previous exams (53.5%), a slightly lower error rate (50.9%), and fewer calls/emails by clinicians (78.9%) due to SR. The perceived impact of SR on communication with clinicians (i.e., frequency of calls/emails) differed with radiologists' experience (p < 0.001), and experience also showed low but significant correlations with communication with clinicians (r = - 0.27, p = 0.003), report quality (r = 0.19, p = 0.043), and error rate (r = - 0.22, p = 0.016). Template use also affected the perceived impact of SR on report quality (p = 0.036). CONCLUSION: Radiologists regard SR in oncologic imaging favorably, with perceived positive effects on report quality, error rate, comparison of serial exams, and communication with clinicians. CLINICAL RELEVANCE STATEMENT: Radiologists believe that structured reporting in oncologic imaging improves report quality, decreases the error rate, and enables better communication with clinicians. Implementation of structured reporting in Europe is currently below the international level and needs society endorsement. KEY POINTS: • The majority of oncologic imaging specialists (57% overall; 51% in Europe) use structured reporting in clinical practice. • The vast majority of oncologic imaging specialists use templates (92.1%), which are typically cancer-specific (76.2%). • Structured reporting is perceived to markedly improve report quality, communication with clinicians, and comparison to prior scans.

5.
Eur J Radiol ; 170: 111198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992608

ABSTRACT

PURPOSE: The purpose of this study was to assess the ability of pretreatment PET parameters and peripheral blood biomarkers to predict progression-free survival (PFS) and overall survival (OS) in NSCLC patients treated with ICIT. METHODS: We prospectively included 87 patients in this study who underwent pre-treatment [18F]-FDG PET/CT. Organ-specific and total metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured using a semiautomatic software. Sites of organ involvement (SOI) were assessed by PET/CT. The log-rank test and Cox-regression analysis were used to assess associations between clinical, laboratory, and imaging parameters with PFS and OS. Time dependent ROC were calculated and model performance was evaluated in terms of its clinical utility. RESULTS: MTV increased with the number of SOI and was correlated with neutrophil and lymphocyte cell count (Spearman's rho = 0.27 or 0.32; p =.02 or 0.003; respectively). Even after adjustment for known risk factors, such as PD-1 expression and neutrophil cell count, the MTV and the number of SOI were independent risk factors for progression (per 100 cm3; adjusted hazard ratio [aHR]: 1.13; 95% confidence interval [95%CI]: 1.01-1.28; p =.04; single SOI vs. ≥ 4 SOI: aHR: 2.26, 95%CI: 1.04-4.94; p =.04). MTV and the number of SOI were independent risk factors for overall survival (per 100 cm3 aHR: 1.11, 95%CI: 1.01-1.23; p =.03; single SOI vs. ≥ 4 SOI: aHR: 4.54, 95%CI: 1.64-12.58; p =.04). The combination of MTV and the number of SOI improved the risk stratification for PFS and OS (log-rank test p <.001; C-index: 0.64 and 0.67). CONCLUSION: The MTV and the number of SOI are simple imaging markers that provide complementary information to facilitate risk stratification in NSCLC patients scheduled for ICIT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Immune Checkpoint Inhibitors , Tumor Burden , Fluorodeoxyglucose F18/metabolism , Prognosis , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Retrospective Studies , Glycolysis , Radiopharmaceuticals
6.
Lancet Digit Health ; 6(2): e114-e125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135556

ABSTRACT

BACKGROUND: The rising global cancer burden has led to an increasing demand for imaging tests such as [18F]fluorodeoxyglucose ([18F]FDG)-PET-CT. To aid imaging specialists in dealing with high scan volumes, we aimed to train a deep learning artificial intelligence algorithm to classify [18F]FDG-PET-CT scans of patients with lymphoma with or without hypermetabolic tumour sites. METHODS: In this retrospective analysis we collected 16 583 [18F]FDG-PET-CTs of 5072 patients with lymphoma who had undergone PET-CT before or after treatment at the Memorial Sloa Kettering Cancer Center, New York, NY, USA. Using maximum intensity projection (MIP), three dimensional (3D) PET, and 3D CT data, our ResNet34-based deep learning model (Lymphoma Artificial Reader System [LARS]) for [18F]FDG-PET-CT binary classification (Deauville 1-3 vs 4-5), was trained on 80% of the dataset, and tested on 20% of this dataset. For external testing, 1000 [18F]FDG-PET-CTs were obtained from a second centre (Medical University of Vienna, Vienna, Austria). Seven model variants were evaluated, including MIP-based LARS-avg (optimised for accuracy) and LARS-max (optimised for sensitivity), and 3D PET-CT-based LARS-ptct. Following expert curation, areas under the curve (AUCs), accuracies, sensitivities, and specificities were calculated. FINDINGS: In the internal test cohort (3325 PET-CTs, 1012 patients), LARS-avg achieved an AUC of 0·949 (95% CI 0·942-0·956), accuracy of 0·890 (0·879-0·901), sensitivity of 0·868 (0·851-0·885), and specificity of 0·913 (0·899-0·925); LARS-max achieved an AUC of 0·949 (0·942-0·956), accuracy of 0·868 (0·858-0·879), sensitivity of 0·909 (0·896-0·924), and specificity of 0·826 (0·808-0·843); and LARS-ptct achieved an AUC of 0·939 (0·930-0·948), accuracy of 0·875 (0·864-0·887), sensitivity of 0·836 (0·817-0·855), and specificity of 0·915 (0·901-0·927). In the external test cohort (1000 PET-CTs, 503 patients), LARS-avg achieved an AUC of 0·953 (0·938-0·966), accuracy of 0·907 (0·888-0·925), sensitivity of 0·874 (0·843-0·904), and specificity of 0·949 (0·921-0·960); LARS-max achieved an AUC of 0·952 (0·937-0·965), accuracy of 0·898 (0·878-0·916), sensitivity of 0·899 (0·871-0·926), and specificity of 0·897 (0·871-0·922); and LARS-ptct achieved an AUC of 0·932 (0·915-0·948), accuracy of 0·870 (0·850-0·891), sensitivity of 0·827 (0·793-0·863), and specificity of 0·913 (0·889-0·937). INTERPRETATION: Deep learning accurately distinguishes between [18F]FDG-PET-CT scans of lymphoma patients with and without hypermetabolic tumour sites. Deep learning might therefore be potentially useful to rule out the presence of metabolically active disease in such patients, or serve as a second reader or decision support tool. FUNDING: National Institutes of Health-National Cancer Institute Cancer Center Support Grant.


Subject(s)
Deep Learning , Lymphoma , United States , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Retrospective Studies , Artificial Intelligence , Radiopharmaceuticals , Lymphoma/diagnostic imaging
7.
ACS Omega ; 8(25): 22486-22495, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396228

ABSTRACT

Multiple myeloma (MM) is the second most prevalent hematological malignancy. It remains incurable despite the availability of novel therapeutic approaches, marking an urgent need for new agents for noninvasive targeted imaging of MM lesions. CD38 has proven to be an excellent biomarker due to its high expression in aberrant lymphoid and myeloid cells relative to normal cell populations. Using isatuximab (Sanofi), the latest FDA-approved CD38-targeting antibody, we have developed Zirconium-89(89Zr)-labeled isatuximab as a novel immunoPET tracer for the in vivo delineation of MM and evaluated the extension of its applicability to lymphomas. In vitro studies validated the high binding affinity and specificity of 89Zr-DFO-isatuximab for CD38. PET imaging demonstrated the high performance of 89Zr-DFO-isatuximab as a targeted imaging agent to delineate tumor burden in disseminated models of MM and Burkitt's lymphoma. Ex vivo biodistribution studies confirmed that high accumulations of the tracer in bone marrow and bone skeleton correspond to specific disease lesions as they are reduced to background in blocking and healthy controls. This work demonstrates the promise of 89Zr-DFO-isatuximab as an immunoPET tracer for CD38-targeted imaging of MM and certain lymphomas. More importantly, its potential as an alternative to 89Zr-DFO-daratumumab holds great clinical relevance.

8.
J Neuroendocrinol ; 35(6): e13311, 2023 06.
Article in English | MEDLINE | ID: mdl-37345276

ABSTRACT

RECIST 1.1 criteria are commonly used with computed tomography (CT) to evaluate the efficacy of systemic treatments in patients with neuroendocrine tumors (NETs) and liver metastases (LMs), but their relevance is questioned in this setting. We aimed to explore alternative criteria using different numbers of measured LMs and thresholds of size and density variation. We retrospectively studied patients with advanced pancreatic or small intestine NETs with LMs, treated with systemic treatment in the first-and/or second-line, without early progression, in 14 European expert centers. We compared time to treatment failure (TTF) between responders and non-responders according to various criteria defined by 0%, 10%, 20% or 30% decrease in the sum of LM size, and/or by 10%, 15% or 20% decrease in LM density, measured on two, three or five LMs, on baseline (≤1 month before treatment initiation) and first revaluation (≤6 months) contrast-enhanced CT scans. Multivariable Cox proportional hazard models were performed to adjust the association between response criteria and TTF on prognostic factors. We included 129 systemic treatments (long-acting somatostatin analogs 41.9%, chemotherapy 26.4%, targeted therapies 31.8%), administered as first-line (53.5%) or second-line therapies (46.5%) in 91 patients. A decrease ≥10% in the size of three LMs was the response criterion that best predicted prolonged TTF, with significance at multivariable analysis (HR 1.90; 95% CI: 1.06-3.40; p = .03). Conversely, response defined by RECIST 1.1 did not predict prolonged TTF (p = .91), and neither did criteria based on changes in LM density. A ≥10% decrease in size of three LMs could be a more clinically relevant criterion than the current 30% threshold utilized by RECIST 1.1 for the evaluation of treatment efficacy in patients with advanced NETs. Its implementation in clinical trials is mandatory for prospective validation. Criteria based on changes in LM density were not predictive of treatment efficacy. CLINICAL TRIAL REGISTRATION: Registered at CNIL-CERB, Assistance publique hopitaux de Paris as "E-NETNET-L-E-CT" July 2018. No number was assigned. Approved by the Medical Ethics Review Board of University Medical Center Groningen.


Subject(s)
Liver Neoplasms , Neuroendocrine Tumors , Humans , Response Evaluation Criteria in Solid Tumors , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/drug therapy , Retrospective Studies , Tomography, X-Ray Computed , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy
9.
Clin Nucl Med ; 48(7): 557-562, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37272977

ABSTRACT

PURPOSE: The aim of this study was to compare CXCR4 imaging with 68Ga-pentixafor PET to MRI for treatment response assessment in patients with mantle cell lymphoma (MCL). PATIENTS AND METHODS: Twenty-two posttreatment 68Ga-pentixafor PET/MRI scans of 16 patients (7 women and 9 men; mean age, 69.9 ± 7.9) with a total of 67 target lesions on baseline PET/MRI were analyzed. Rates of complete remission per lesion and per scan, according to MRI (based on lesion size) and 68Ga-pentixafor PET (based on SUV decrease to lower than liver and blood pool uptake), were compared using McNemar tests. The t tests and Pearson correlation coefficients (r) were used to compare rates of change in lesion diameter products (DPs) on MRI, and standardized uptake values (SUVmax, SUVmean) on PET, relative to baseline. RESULTS: At interim PET/MRI, 18/32 (56.3%) target lesions met CR criteria on 68Ga-pentixafor PET, and 16/32 (50.0%) lesions met size-based MRI criteria for CR (P = 0.63). At end-of-treatment PET/MRI, 40/57 (70.2%) target lesions met 68Ga-pentixafor PET criteria for CR, and 27/57 (47.4%) lesions met size-based MRI criteria for CR (P = 0.021). Complete remission after treatment was observed more frequently on 68Ga-pentixafor PET (11/22 scans, 54.5%) than on MRI (6/22 scans, 27.3%) (P = 0.031). Rates of change did not differ significantly between lesion DP (-69.20% ± 34.62%) and SUVmax (-64.59% ± 50.78%, P = 0.22), or DP and SUVmean (-60.15 ± 64.58, P = 0.064). Correlations were strong between DP and SUVmax (r = 0.71, P < 0.001) and DP and SUVmean (r = 0.73, P < 0.001). CONCLUSIONS: In MCL patients, 68Ga-pentixafor PET may be superior for assessment of complete remission status than anatomic MRI using lesion size criteria, especially at the end of treatment.


Subject(s)
Coordination Complexes , Lymphoma, Mantle-Cell , Aged , Female , Humans , Male , Middle Aged , Lymphoma, Mantle-Cell/diagnostic imaging , Lymphoma, Mantle-Cell/therapy , Magnetic Resonance Imaging/methods , Peptides, Cyclic , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Receptors, CXCR4/metabolism
10.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37189492

ABSTRACT

This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.

11.
Invest Radiol ; 58(9): 697-701, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36897814

ABSTRACT

OBJECTIVES: The aims of this study were to determine whether ComBat harmonization improves multiclass radiomics-based tissue classification in technically heterogeneous MRI data sets and to compare the performances of 2 ComBat variants. MATERIALS AND METHODS: One hundred patients who had undergone T1-weighted 3D gradient echo Dixon MRI (2 scanners/vendors; 50 patients each) were retrospectively included. Volumes of interest (2.5 cm 3 ) were placed in 3 disease-free tissues with visually similar appearance on T1 Dixon water images: liver, spleen, and paraspinal muscle. Gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM) radiomic features were extracted. Tissue classification was performed on pooled data from the 2 centers (1) without harmonization, (2) after ComBat harmonization with empirical Bayes estimation (ComBat-B), and (3) after ComBat harmonization without empirical Bayes estimation (ComBat-NB). Linear discriminant analysis with leave-one-out cross-validation was used to distinguish among the 3 tissue types, using all available radiomic features as input. In addition, a multilayer perceptron neural network with a random 70%:30% split into training and test data sets was used for the same task, but separately for each radiomic feature category. RESULTS: Linear discriminant analysis-based mean tissue classification accuracies were 52.3% for unharmonized, 66.3% for ComBat-B harmonized, and 92.7% for ComBat-NB harmonized data. For multilayer perceptron neural network, mean classification accuracies for unharmonized, ComBat-B-harmonized, and ComBat-NB-harmonized test data were as follows: 46.8%, 55.1%, and 57.5% for GLH; 42.0%, 65.3%, and 71.0% for GLCM; 45.3%, 78.3%, and 78.0% for GLRLM; and 48.1%, 81.1%, and 89.4% for GLSZM. Accuracies were significantly higher for both ComBat-B- and ComBat-NB-harmonized data than for unharmonized data for all feature categories (at P = 0.005, respectively). For GLCM ( P = 0.001) and GLSZM ( P = 0.005), ComBat-NB harmonization provided slightly higher accuracies than ComBat-B harmonization. CONCLUSIONS: ComBat harmonization may be useful for multicenter MRI radiomics studies with nonbinary classification tasks. The degree of improvement by ComBat may vary among radiomic feature categories, among classifiers, and among ComBat variants.


Subject(s)
Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Retrospective Studies , Bayes Theorem , Machine Learning
13.
Eur Radiol ; 33(2): 1194-1204, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35986772

ABSTRACT

OBJECTIVES: To explore radiologists' opinions regarding the shift from in-person oncologic multidisciplinary team meetings (MDTMs) to online MDTMs. To assess the perceived impact of online MDTMs, and to evaluate clinical and technical aspects of online meetings. METHODS: An online questionnaire including 24 questions was e-mailed to all European Society of Oncologic Imaging (ESOI) members. Questions targeted the structure and efficacy of online MDTMs, including benefits and limitations. RESULTS: A total of 204 radiologists responded to the survey. Responses were evaluated using descriptive statistical analysis. The majority (157/204; 77%) reported a shift to online MDTMs at the start of the pandemic. For the most part, this transition had a positive effect on maintaining and improving attendance. The majority of participants reported that online MDTMs provide the same clinical standard as in-person meetings, and that interdisciplinary discussion and review of imaging data were not hindered. Seventy three of 204 (35.8%) participants favour reverting to in-person MDTs, once safe to do so, while 7/204 (3.4%) prefer a continuation of online MDTMs. The majority (124/204, 60.8%) prefer a combination of physical and online MDTMs. CONCLUSIONS: Online MDTMs are a viable alternative to in-person meetings enabling continued timely high-quality provision of care with maintained coordination between specialties. They were accepted by the majority of surveyed radiologists who also favoured their continuation after the pandemic, preferably in combination with in-person meetings. An awareness of communication issues particular to online meetings is important. Training, improved software, and availability of support are essential to overcome technical and IT difficulties reported by participants. KEY POINTS: • Majority of surveyed radiologists reported shift from in-person to online oncologic MDT meetings during the COVID-19 pandemic. • The shift to online MDTMs was feasible and generally accepted by the radiologists surveyed with the majority reporting that online MDTMs provide the same clinical standard as in-person meetings. • Most would favour the return to in-person MDTMs but would also accept the continued use of online MDTMs following the end of the current pandemic.


Subject(s)
COVID-19 , Humans , Pandemics , Radiologists , Surveys and Questionnaires , Patient Care Team
14.
Insights Imaging ; 13(1): 159, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36194301

ABSTRACT

BACKGROUND: Lesion/tissue segmentation on digital medical images enables biomarker extraction, image-guided therapy delivery, treatment response measurement, and training/validation for developing artificial intelligence algorithms and workflows. To ensure data reproducibility, criteria for standardised segmentation are critical but currently unavailable. METHODS: A modified Delphi process initiated by the European Imaging Biomarker Alliance (EIBALL) of the European Society of Radiology (ESR) and the European Organisation for Research and Treatment of Cancer (EORTC) Imaging Group was undertaken. Three multidisciplinary task forces addressed modality and image acquisition, segmentation methodology itself, and standards and logistics. Devised survey questions were fed via a facilitator to expert participants. The 58 respondents to Round 1 were invited to participate in Rounds 2-4. Subsequent rounds were informed by responses of previous rounds. RESULTS/CONCLUSIONS: Items with ≥ 75% consensus are considered a recommendation. These include system performance certification, thresholds for image signal-to-noise, contrast-to-noise and tumour-to-background ratios, spatial resolution, and artefact levels. Direct, iterative, and machine or deep learning reconstruction methods, use of a mixture of CE marked and verified research tools were agreed and use of specified reference standards and validation processes considered essential. Operator training and refreshment were considered mandatory for clinical trials and clinical research. Items with a 60-74% agreement require reporting (site-specific accreditation for clinical research, minimal pixel number within lesion segmented, use of post-reconstruction algorithms, operator training refreshment for clinical practice). Items with ≤ 60% agreement are outside current recommendations for segmentation (frequency of system performance tests, use of only CE-marked tools, board certification of operators, frequency of operator refresher training). Recommendations by anatomical area are also specified.

15.
Eur J Nucl Med Mol Imaging ; 50(1): 205-217, 2022 12.
Article in English | MEDLINE | ID: mdl-36063201

ABSTRACT

PURPOSE: The purpose of this study was to determine whether multiparametric positron emission tomography/magnetic resonance imaging (mpPET/MRI) can improve locoregional staging of rectal cancer (RC) and to assess its prognostic value after resection. METHODS: In this retrospective study, 46 patients with primary RC, who underwent multiparametric 18F-fluorodeoxyglucose (FDG) PET/MRI, followed by surgical resection without chemoradiotherapy, were included. Two readers reviewed T- and N- stage, mesorectal involvement, sphincter infiltration, tumor length, and distance from anal verge. In addition, diffusion-weighted imaging (DWI) and PET parameters were extracted from the multiparametric protocol and were compared to radiological staging as well as to the histopathological reference standard. Clinical and imaging follow-up was systematically assessed for tumor recurrence and death. RESULTS: Locally advanced rectal cancers (LARC) exhibited significantly higher metabolic tumor volume (MTV, AUC 0.74 [95% CI 0.59-0.89], p = 0.004) and total lesion glycolysis (TLG, AUC 0.70 [95% CI 0.53-0.87], p = 0.022) compared to early tumors. T-stage was associated with MTV (AUC 0.70 [95% CI 0.54-0.85], p = 0.021), while N-stage was better assessed using anatomical MRI sequences (AUC 0.72 [95% CI 0.539-0.894], p = 0.032). In the multivariate regression analysis, depending on the model, both anatomical MRI sequences and MTV/TLG were capable of detecting LARC. Combining anatomical MRI stage and MTV/TLG led to a superior diagnostic performance for detecting LARC (AUC 0.81, [95% CI 0.68-0.94], p < 0.001). In the survival analysis, MTV was independently associated with overall survival (HR 1.05 [95% CI 1.01-1.10], p = 0.044). CONCLUSION: Multiparametric PET-MRI can improve identification of locally advanced tumors and, hence, help in treatment stratification. It provides additional information on RC tumor biology and may have prognostic value.


Subject(s)
Fluorodeoxyglucose F18 , Rectal Neoplasms , Humans , Fluorodeoxyglucose F18/metabolism , Retrospective Studies , Neoplasm Recurrence, Local/pathology , Positron-Emission Tomography/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Tumor Burden , Prognosis , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Neoplasm Staging
16.
Expert Rev Hematol ; 15(7): 565-571, 2022 07.
Article in English | MEDLINE | ID: mdl-35695746

ABSTRACT

INTRODUCTION: The stomach is the most common site of origin for extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma). Antibiotic eradication of Helicobacter pylori (H. pylori) is the standard first-line treatment, with response assessment being performed by histological evaluation of multiple gastric biopsies. AREAS COVERED: The objective of this review is to provide an update on results obtained using noninvasive methods, including magnetic resonance imaging (MRI), positron emission tomography combined with computed tomography (PET/CT), and most recently, PET/MRI for the assessment of disease extent and response to treatment in patients with gastric MALT lymphoma. EXPERT OPINION: While CT is the officially recommended imaging technique, few studies in small cohorts have suggested that diffusion-weighted MRI shows higher sensitivity, also relative to 18 F-FDG PET/CT, for both gastric and nongastric MALT lymphomas. A recent prospective study using PET/MRI with the novel CXCR4-targeting radiotracer 68 Ga-Pentixafor suggested that, for patients with gastric MALT lymphoma after H. pylori eradication, this imaging technique may provide excellent accuracy (97%) for assessment of residual or recurrent disease. Although recent studies on CXCR4-targeting PET and to some extent also diffusion-weighted MRI are promising, there is insufficient evidence to suggest a change in clinical practice.


Subject(s)
Helicobacter pylori , Lymphoma, B-Cell, Marginal Zone , Gastroscopy , Humans , Lymphoma, B-Cell, Marginal Zone/diagnostic imaging , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, Non-Hodgkin , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Stomach/pathology , Stomach Neoplasms
17.
J Nucl Med ; 63(10): 1611-1616, 2022 10.
Article in English | MEDLINE | ID: mdl-35210300

ABSTRACT

Our purpose was to determine whether ComBat harmonization improves 18F-FDG PET radiomics-based tissue classification in pooled PET/MRI and PET/CT datasets. Methods: Two hundred patients who had undergone 18F-FDG PET/MRI (2 scanners and vendors; 50 patients each) or PET/CT (2 scanners and vendors; 50 patients each) were retrospectively included. Gray-level histogram, gray-level cooccurrence matrix, gray-level run-length matrix, gray-level size-zone matrix, and neighborhood gray-tone difference matrix radiomic features were calculated for volumes of interest in the disease-free liver, spleen, and bone marrow. For individual feature classes and a multiclass radiomic signature, tissue was classified on ComBat-harmonized and unharmonized pooled data, using a multilayer perceptron neural network. Results: Median accuracies in training and validation datasets were 69.5% and 68.3% (harmonized), respectively, versus 59.5% and 58.9% (unharmonized), respectively, for gray-level histogram; 92.1% and 86.1% (harmonized), respectively, versus 53.6% and 50.0% (unharmonized), respectively, for gray-level cooccurrence matrix; 84.8% and 82.8% (harmonized), respectively, versus 62.4% and 58.3% (unharmonized), respectively, for gray-level run-length matrix; 87.6% and 85.6% (harmonized), respectively, versus 56.2% and 52.8% (unharmonized), respectively, for gray-level size-zone matrix; 79.5% and 77.2% (harmonized), respectively, versus 54.8% and 53.9% (unharmonized), respectively, for neighborhood gray-tone difference matrix; and 86.9% and 84.4% (harmonized), respectively, versus 62.9% and 58.3% (unharmonized), respectively, for radiomic signature. Conclusion: ComBat harmonization may be useful for multicenter 18F-FDG PET radiomics studies using pooled PET/MRI and PET/CT data.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Retrospective Studies
18.
J Nucl Cardiol ; 29(2): 492-502, 2022 04.
Article in English | MEDLINE | ID: mdl-32696137

ABSTRACT

AIM: The aim of this study was to evaluate and correct for partial-volume-effects (PVE) on [68Ga]Ga-Pentixafor uptake in atherosclerotic plaques of the carotid arteries, and the impact of ignoring bone in MR-based attenuation correction (MR-AC). METHODS: Twenty [68Ga]Ga-pentixafor PET/MR examinations including a high-resolution T2-TSE MR of the neck were included in this study. Carotid plaques located at the carotid bifurcation were delineated and the anatomical information was used for partial-volume-correction (PVC). Mean and max tissue-to-background ratios (TBR) of the [68Ga]Ga-Pentixafor uptake were compared for standard and PVC-PET images. A potential influence of ignoring bone in MR-AC was assessed in a subset of the data reconstructed after incorporating bone into MR-AC and a subsequent comparison of standardized-uptake values (SUV). RESULTS: In total, 34 atherosclerotic plaques were identified. Following PVC, mean and max TBR increased by 77 and 95%, respectively, when averaged across lesions. When accounting for bone in the MR-AC, SUV of plaque changed by 0.5%. CONCLUSION: Quantitative readings of [68Ga]Ga-pentixafor uptake in plaques are strongly affected by PVE, which can be reduced by PVC. Including bone information into the MR-AC yielded no clinically relevant effect on tracer quantification.


Subject(s)
Gallium Radioisotopes , Plaque, Atherosclerotic , Humans , Carotid Arteries/diagnostic imaging , Coordination Complexes , Magnetic Resonance Imaging/methods , Peptides, Cyclic , Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography/methods
19.
Blood ; 139(2): 240-244, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34525196

ABSTRACT

Posttreatment evaluation of gastric mucosa-associated lymphoid tissue (MALT) lymphoma currently relies on esophagogastroduodenoscopy with histological assessment of biopsies. Overexpression of the G protein-coupled C-X-C chemokine receptor type 4 (CXCR4) has been previously observed in MALT lymphoma. The aim of this prospective study was to evaluate positron emission tomography (PET) with the novel CXCR4 tracer [68Ga]Pentixafor as a potential alternative to follow up biopsies for assessment of residual disease (noncomplete remission [CR]) after first-line Helicobacter pylori eradication. Forty-six post-H pylori eradication [68Ga]Pentixafor-PET/magnetic resonance imaging (MRI) examinations of 26 gastric MALT lymphoma patients, and 20 [68Ga]Pentixafor-PET/MRI examinations of 20 control group patients without lymphoma, were analyzed. In the MALT lymphoma group, time-matched gastric biopsies were used as reference standard and showed CR in 6 cases. Pooled examination-based accuracy, sensitivity, specificity, and positive and negative predictive values of [68Ga]Pentixafor-PET for detection of residual gastric MALT lymphoma at follow-up were 97.0%, 95.0%, 100.0%, 100.0%, and 92.9%, respectively. Maximum and mean PET standardized uptake values showed moderate correlation with immunohistochemistry-based CXCR4+ cell counts, with correlation coefficients of r = 0.51 and r = 0.52 (P = .008 and P = .006). In summary, CXCR4 imaging with [68Ga]Pentixafor-PET may represent a promising test for assessment of residual gastric MALT lymphomas after H pylori eradication.


Subject(s)
Coordination Complexes/analysis , Gallium Radioisotopes/analysis , Lymphoma, B-Cell, Marginal Zone/diagnostic imaging , Peptides, Cyclic/analysis , Receptors, CXCR4/analysis , Stomach Neoplasms/diagnostic imaging , Aged , Anti-Bacterial Agents/therapeutic use , Follow-Up Studies , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Humans , Lymphoma, B-Cell, Marginal Zone/microbiology , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Prospective Studies , Stomach Neoplasms/microbiology
20.
Cancer Discov ; 12(2): 372-387, 2022 02.
Article in English | MEDLINE | ID: mdl-34635570

ABSTRACT

Personalized medicine aims to match the right drug with the right patient by using specific features of the individual patient's tumor. However, current strategies of personalized therapy matching provide treatment opportunities for less than 10% of patients with cancer. A promising method may be drug profiling of patient biopsy specimens with single-cell resolution to directly quantify drug effects. We prospectively tested an image-based single-cell functional precision medicine (scFPM) approach to guide treatments in 143 patients with advanced aggressive hematologic cancers. Fifty-six patients (39%) were treated according to scFPM results. At a median follow-up of 23.9 months, 30 patients (54%) demonstrated a clinical benefit of more than 1.3-fold enhanced progression-free survival compared with their previous therapy. Twelve patients (40% of responders) experienced exceptional responses lasting three times longer than expected for their respective disease. We conclude that therapy matching by scFPM is clinically feasible and effective in advanced aggressive hematologic cancers. SIGNIFICANCE: This is the first precision medicine trial using a functional assay to instruct n-of-one therapies in oncology. It illustrates that for patients lacking standard therapies, high-content assay-based scFPM can have a significant value in clinical therapy guidance based on functional dependencies of each patient's cancer.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Hematologic Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Austria , Cohort Studies , Female , Hematologic Neoplasms/mortality , Humans , Male , Middle Aged , Molecular Targeted Therapy , Precision Medicine , Progression-Free Survival , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...