Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39056634

ABSTRACT

Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Molecular Imprinting , Nanoparticles , Nanoparticles/chemistry , Polymers/chemistry , Molecularly Imprinted Polymers/chemistry
2.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930908

ABSTRACT

BACKGROUND: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. METHOD: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. RESULTS: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. CONCLUSIONS: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components.


Subject(s)
Liposomes , Surface-Active Agents , Liposomes/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Molecular Docking Simulation , Anesthetics/chemistry , Anesthetics/pharmacology , Drug Compounding , Microbial Sensitivity Tests
3.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791107

ABSTRACT

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Subject(s)
Photoelectron Spectroscopy , Plastics , Polyethylene , Photoelectron Spectroscopy/methods , Plastics/chemistry , Polyethylene/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seawater/chemistry , Microplastics/chemistry , Oxidation-Reduction
4.
Polymers (Basel) ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732760

ABSTRACT

The rapid worldwide industrial growth in recent years has made water contamination by heavy metals a problem that requires an immediate solution. Several strategies have been proposed for the decontamination of wastewater in terms of heavy metal ions. Among these, methods utilizing adsorbent materials are preferred due to their cost-effectiveness, simplicity, effectiveness, and scalability for treating large volumes of contaminated water. In this context, heavy metal removal by hydrogels based on naturally occurring polymers is an attractive approach for industrial wastewater remediation as they offer significant advantages, such as an optimal safety profile, good biodegradability, and simple and low-cost procedures for their preparation. Hydrogels have the ability to absorb significant volumes of water, allowing for the effective removal of the dissolved pollutants. Furthermore, they can undergo surface chemical modifications which can further improve their ability to retain different environmental pollutants. This review aims to summarize recent advances in the application of hydrogels in the treatment of heavy metal-contaminated wastewater, particularly focusing on hydrogels based on cellulose and cellulose derivatives. The reported studies highlight how the adsorption properties of these materials can be widely modified, with a wide range of adsorption capacity for different heavy metal ions varying between 2.3 and 2240 mg/g. The possibility of developing new hydrogels with improved sorption performances is also discussed in the review, with the aim of improving their effective application in real scenarios, indicating future directions in the field.

5.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611911

ABSTRACT

An environmentally friendly and sustainable approach was adopted to produce a molecularly imprinted polymer (MIP) via electropolymerization, with remarkable electrochemical sensing properties, tested in tyrosine (tyr) detection. The 2,2'-bis(2,2'-bithiophene-5-yl)-3,3'-bithianaphtene (BT2-T4) was chosen as functional monomer and MIP electrosynthesis was carried out via cyclic voltammetry on low-volume (20 µL) screen-printed carbon electrodes (C-SPE) in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((BMIM) TFSI). An easy and rapid washing treatment allowed us to obtain the resulting MIP film, directly used for tyr electrochemical detection, carried out amperometrically. The sensor showed a linear response in the concentration range of 15-200 µM, with LOD of 1.04 µM, LOQ of 3.17 µM and good performance in selectivity, stability, and reproducibility. Tyrosine amperometric detection was also carried out in human plasma, resulting in a satisfactory recovery estimation. The work represents the first use of BT2-T4 as a functional monomer for the production of a molecularly imprinted polymer, with a green approach afforded by using a few microliters of a room temperature ionic liquid as an alternative to common organic solvents on screen-printed carbon electrodes, resulting in a valuable system that meets the green chemistry guidelines, which is today an essential criterion in both research and application field.

6.
Gels ; 10(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38534599

ABSTRACT

BACKGROUND: This study aims to evaluate the percutaneous permeation profiles of caffeic acid (CA) from the cubic and hexagonal liquid crystalline phases of Pluronic P123/water mixtures. METHOD: The resulting drug-loaded mesophases were subjected to characterisation through deuterium nuclear magnetic resonance spectroscopy and polarised optical microscopy observations. These analyses aimed to evaluate the structural changes that occurred in the mesophases loading with CA. Additionally, steady and dynamic rheology studies were conducted to further explore their mechanical properties and correlate them to the supramolecular structure. Finally, CA release experiments were carried out at two different temperatures to examine the behaviour of the structured systems in a physiological or hyperthermic state. RESULTS: As the concentration of the polymer increases, an increase in the viscosity of the gel is noted; however, the addition of caffeic acid increases microstructure fluidity. It is observed that the temperature effect conforms to expectations. The increase in temperature causes a decrease in viscosity and, consequently, an increase in the rate of permeation of caffeic acid. CONCLUSIONS: The CA permeation profile from the prepared formulations is mostly dependent on the structural organisation and temperature. Cubic mesophase LLC 30/CA showed greater skin permeation with good accumulation in the skin at both tested temperatures.

7.
Pharmaceutics ; 16(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38543212

ABSTRACT

In this study, liposomes coated with novel multifunctional polymers were proposed as an innovative platform for tumor targeted drug delivery. Novel Folic acid-Cysteine-Thiolated chitosan (FTC) derivatives possessing active targeting ability and redox responsivity were synthesized, characterized, and employed to develop FTC-coated liposomes. Liposomes were characterized for size, surface charge and drug encapsulation efficiency before and after coating. The formation of a coating layer on liposomal surface was confirmed by the slight increase in particle size and by zeta-potential changes. FTC-coated liposomes showed a redox-dependent drug release profile: good stability at physiological conditions and rapid release of liposome-entrapped calcein in presence of glutathione. Moreover, the uptake and cytotoxic activity of doxorubicin-loaded FTC-coated liposomes was evaluated on murine B16-F10 and human SKMEL2 melanoma cancer cells. Results demonstrated enhanced uptake and antitumor efficacy of FTC-coated liposomes compared to control chitosan-coated liposomes in both cancer lines, which is attributed to higher cellular uptake via folate receptor-mediated endocytosis and to triggered drug release by the reductive microenvironment of tumor cells. The proposed novel liposomes show great potential as nanocarriers for targeted therapy of cancer.

8.
Mikrochim Acta ; 190(10): 425, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37776360

ABSTRACT

The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 µM. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.


Subject(s)
Glucose Oxidase , Nanoparticles , Glucose Oxidase/chemistry , Platinum/chemistry , Reproducibility of Results , Nanoparticles/chemistry , Glucose/analysis
9.
Small ; 19(38): e2302274, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222612

ABSTRACT

Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.

10.
Mater Today Bio ; 17: 100472, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36340591

ABSTRACT

In this review, the most valuable opportunities offered by mesoporous silica nanoparticles in the field of development of nanodevices for bionanotechnology applications are reviewed. The state of the art is critically discussed with particular emphasis on cancer-related application, paying attention to all the aspects of the design and development of the process that engineers the selective administration of an anticancer agent to cancer tissues. The analyses of the critical factors that limit this process are taken into account and the technical solutions proposed to face these factors are discussed. Furthermore, targeting to difficult tissues and forefront applications such as cancer immunotherapy, diagnostic, theranostic, and gene therapy are considered. Lastly, the authors provide their opinion on the reasons according to which the translation of this generation of nanodevices from laboratory research into practical clinical and eventually into the market is possible.

11.
Pharmaceutics ; 14(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297625

ABSTRACT

Lidocaine is a local anaesthetic drug with an amphiphilic structure able to self-associate, under certain conditions, in molecular aggregates playing the role of both carrier and drug. The aim of this study was to determine the optimal conditions for obtaining vesicular carriers, called lidosomes. The new formulations were obtained using both lidocaine and lidocaine hydrochloride and different hydration medias (distilled water, acid, and basic aqueous solution). Lidosomes formulations were characterized in terms of size, ζ-potential, drug retained, stability formulation, and ex vivo permeation profile. Moreover, lidosomes were incorporated in two different gel structures: one based on carboxymethylcellulose and one based on pluronic F-127 to achieve suitable properties for a topical application. Results obtained showed that lidocaine showed a better performance to aggregate in vesicular carriers in respect to hydrochloride form. Consequently, only formulations comprised of lidocaine were studied in terms of skin permeation performance and as carriers of another model drug, capsaicin, for a potential combined therapy. Lidocaine, when in form of vesicular aggregates, acted as percutaneous permeation enhancer showing better permeation profiles with respect to drug solutions. Moreover, lidosomes created a significant drug depot into the skin from which the drug was available for a prolonged time, a suitable feature for a successful local therapy.

12.
Antioxidants (Basel) ; 11(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36290731

ABSTRACT

A new sustainable route to nanodispersed and functionalized carbon black in water phase (W-CB) is proposed. The sonochemical strategy exploits ultrasounds to disaggregate the CB, while two selected functional naturally derived compounds, sodium cholate (SC) and rosmarinic acid (RA), act as stabilizing agents ensuring dispersibility in water adhering onto the CB nanoparticles' surface. Strategically, the CB-RA compound is used to drive the AuNPs self-assembling at room temperature, resulting in a CB surface that is nanodecorated; further, this is achieved without the need for additional reagents. Electrochemical sensors based on the proposed nanomaterials are realized and characterized both morphologically and electrochemically. The W-CBs' electroanalytical potential is proved in the anodic and cathodic window using caffeic acid (CF) and hydroquinone (HQ), two antioxidant compounds that are significant for food and the environment. For both antioxidants, repeatable (RSD ≤ 3.3%; n = 10) and reproducible (RSD ≤ 3.8%; n = 3) electroanalysis results were obtained, achieving nanomolar detection limits (CF: 29 nM; HQ: 44 nM). CF and HQ are successfully determined in food and environmental samples (recoveries 97-113%), and also in the presence of other phenolic classes and HQ structural isomers. The water dispersibility of the proposed materials can be an opportunity for (bio) sensor fabrication and sustainable device realization.

13.
J Mater Sci ; 57(25): 12161-12175, 2022.
Article in English | MEDLINE | ID: mdl-35755421

ABSTRACT

Scopoletin (SP) as a functional monomer for electropolymerization has recently been investigated in the context of molecularly imprinted polymers for biosensing applications. Herein we describe an in-depth analysis of the mechanisms involved in the electropolymerization of SP toward the optimization of the experimental conditions for applications in sensor studies. PolySP films have been in situ synthesized on a standard glassy carbon electrodes by varying three independent experimental parameters, and the output of the analysis has been evaluated in terms of the resulting electroactive area and surface coverage. A quality-by-design approach including design-of-experiments principles and response surface methodology produced unbiased observations on the most relevant parameters to be controlled during the electropolymerization of SP. By combining the output of electroactive area and surface overage, we highlighted a strong dependence on the monomer concentration and scan rate. Thus, an appropriate selection of these two parameters should be sought to have an optimal electropolymerization process, leading to uniform films and homogeneous surface behavior. This study shows that the application of multi-factorial analysis in a comprehensive design of experiments allows the systematic study of polymer electrosynthesis. Therefore, this research is expected to guide further efforts in the electropolymerization of several functional monomers. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07349-8.

14.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35624722

ABSTRACT

Wine is a complex bioproduct whose chemical composition is highly variable across production regions. In order to shed light on affordable ways to promote the characterization of wines and explore the physicochemical basis of their antioxidant capacity, this work reported on the quick and easy redox profiling of selected red wines from Apulia, Italy. Therefore, an affordable and quickly performed semiempirical quantum chemistry approach, i.e., the extended Hückel method, was used to compute the bandgaps of the main phytochemical markers attributed to red wines. The findings of these calculations were then compared to an electroanalytical investigation in the form of cyclic and square-wave voltammetry, and the electric current of the redox profiles was used as the input dataset for principal component analysis. Results showcased that the semiempirical quantum chemistry calculations allowed the correlation of the bandgaps to the observed faradaic signals upon voltammetry; thereby, also providing insights on their antioxidant appeal by highlighting the feasibility of charge-transfer processes at low electric potentials. Furthermore, the principal component analysis showed that the electric current dataset gathered in a time span of 55 s allowed the appropriate separation of the samples, which hints at the possible use of quick voltammetric assays as fingerprinting tools.

15.
Anal Bioanal Chem ; 414(18): 5165-5200, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35277740

ABSTRACT

Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.


Subject(s)
Molecular Imprinting , Macromolecular Substances , Molecularly Imprinted Polymers , Polymers/chemistry , Proteins
16.
Microorganisms ; 10(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056586

ABSTRACT

In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.

17.
J Funct Biomater ; 14(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36662049

ABSTRACT

In the last decade, alginate-based microgels have gained relevant interest as three-dimensional analogues of extracellular matrix, being able to support cell growth and functions. In this study, core-shell microgels were fabricated by self-polymerization of dopamine (DA) molecules under mild oxidation and in situ precipitation of polydopamine (PDA) onto alginate microbeads, processed by electro fluid dynamic atomization. Morphological (optical, SEM) and chemical analyses (ATR-FTIR, XPS) confirmed the presence of PDA macromolecules, distributed onto the microgel surface. Nanoindentation tests also indicated that the PDA coating can influence the biomechanical properties of the microgel surfaces-i.e., σmaxALG = 0.45 mN vs. σmaxALG@PDA = 0.30 mN-thus improving the interface with hMSCs as confirmed by in vitro tests; in particular, protein adsorption and viability tests show a significant increase in adhesion and cell proliferation, strictly related to the presence of PDA. Hence, we concluded that PDA coating contributes to the formation of a friendly interface able to efficiently support cells' activities. In this perspective, core-shell microgels may be suggested as a novel symmetric 3D model to study in vitro cell interactions.

18.
Nanomaterials (Basel) ; 11(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947709

ABSTRACT

In this work we have compared two different sensing platforms for the detection of morphine as an example of a low molecular weight target analyte. For this, molecularly imprinted polymer nanoparticles (NanoMIP), synthesized with an affinity towards morphine, were attached to an electrochemical impedance spectroscopy (EIS) and a quartz crystal microbalance (QCM) sensor. Assay design, sensors fabrication, analyte sensitivity and specificity were performed using similar methods. The results showed that the EIS sensor achieved a limit of detection (LOD) of 0.11 ng·mL-1, which is three orders of magnitude lower than the 0.19 µg·mL-1 achieved using the QCM sensor. Both the EIS and the QCM sensors were found to be able to specifically detect morphine in a direct assay format. However, the QCM method required conjugation of gold nanoparticles (AuNPs) to the small analyte (morphine) to amplify the signal and achieve a LOD in the µg·mL-1 range. Conversely, the EIS sensor method was labor-intensive and required extensive data handling and processing, resulting in longer analysis times (~30-40 min). In addition, whereas the QCM enables visualization of the binding events between the target molecule and the sensor in real-time, the EIS method does not allow such a feature and measurements are taken post-binding. The work also highlighted the advantages of using QCM as an automated, rapid and multiplex sensor compared to the much simpler EIS platform used in this work, though, the QCM method will require sample preparation, especially when a sensitive (ng·mL-1) detection of a small analyte is needed.

19.
Methods Mol Biol ; 2359: 233-240, 2021.
Article in English | MEDLINE | ID: mdl-34410674

ABSTRACT

The development of an electrosynthesized molecularly imprinted polymer (MIP) based on a metal complex is here reported as an effective strategy for combining advantages coming from metal-ion coordination and catalytic capabilities of metallic centers with ones deriving from electropolymerization. Metal ion coordination combines the flexibility of noncovalent imprinting approaches with the strength and specificity of covalent ones representing an attractive binding mechanism in MIP design for the recognition of a vast array of analytes. In addition, such a MIP possesses catalytic properties other than recognition capability, which is not so common in MIP field. On the other hand, electropolymerization represents a highly successful way of easily anchoring MIP-based sensing layers to the transducer surface. Procedures for MIP electrosynthesis as well as for its analytical application in electrocatalytic sensing are described.


Subject(s)
Molecular Imprinting , Coordination Complexes , Metals , Molecularly Imprinted Polymers
20.
Nanomaterials (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34443800

ABSTRACT

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T' and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22- and S2-, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.

SELECTION OF CITATIONS
SEARCH DETAIL