Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nat Commun ; 14(1): 3294, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322051

ABSTRACT

Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli , Escherichia coli Infections/microbiology , Virulence/genetics , Virulence Factors/genetics , Escherichia coli Proteins/genetics , Phylogeny
3.
Nat Commun ; 14(1): 2275, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080973

ABSTRACT

Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor the development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history.


Subject(s)
Puerperal Infection , Sepsis , Streptococcal Infections , Female , Humans , Pregnancy , Adhesins, Bacterial/genetics , Bacterial Proteins/genetics , Puerperal Infection/epidemiology , Puerperal Infection/microbiology , Sepsis/microbiology , Streptococcal Infections/microbiology , Streptococcus pyogenes
4.
J Immunol ; 208(5): 1232-1247, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110419

ABSTRACT

The ß protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of ß as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by ß retained its decay acceleration and cofactor activities. Heterologous expression of ß by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by ß was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.


Subject(s)
Bacterial Proteins/metabolism , Immune Evasion/immunology , Membrane Proteins/metabolism , Streptococcus agalactiae/immunology , Binding Sites/physiology , Complement C3b/metabolism , Complement Factor H/metabolism , Humans , Neutrophils/immunology , Opsonization/immunology , Protein Binding/immunology , Protein Domains/genetics , Protein Domains/immunology , Streptococcal Infections/immunology , Streptococcal Infections/pathology
5.
Methods Mol Biol ; 2377: 199-213, 2022.
Article in English | MEDLINE | ID: mdl-34709618

ABSTRACT

Transposon-directed insertion site sequencing (TraDIS) combines random transposon mutagenesis and massively parallel sequencing to shed light on bacterial gene function on a genome-wide scale and in a high-throughput manner. The technique has proven to be successful in the determination of the fitness contribution of every gene under specific conditions both in vitro and in vivo. In this contribution, we describe the procedure used for the identification of Escherichia coli K1 genes essential for in vitro growth, survival in pooled human serum and gastrointestinal colonisation in a rodent model of neonatal invasive infection. TraDIS has broad application for systems-level analysis of a wide range of pathogenic, commensular and saprophytic bacteria.


Subject(s)
Escherichia coli , DNA Transposable Elements/genetics , Escherichia coli/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Mutagenesis, Insertional , Virulence/genetics
6.
EMBO J ; 40(7): e106103, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33522633

ABSTRACT

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Subject(s)
Adhesins, Bacterial/chemistry , Antigens, CD/chemistry , Carcinoembryonic Antigen/chemistry , Cell Adhesion Molecules/chemistry , Adhesins, Bacterial/metabolism , Animals , Antigens, CD/metabolism , Binding Sites , CHO Cells , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Cricetinae , Cricetulus , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , HeLa Cells , Humans , Protein Binding , Streptococcus agalactiae/metabolism
7.
Microorganisms ; 8(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353175

ABSTRACT

Transmission of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) between people and pets, and their co-carriage, are well-described. Potential exchange of antimicrobial resistance (AMR) genes amongst these staphylococci was investigated in vitro through endogenous bacteriophage-mediated transduction. Bacteriophages were UV-induced from seven donor isolates of canine (MRSP) and human (MRSA) origin, containing tet(M), tet(K), fusB or fusC, and lysates filtered. Twenty-seven tetracycline- and fusidic acid- (FA-) susceptible recipients were used in 122 donor-recipient combinations (22 tetracycline, 100 FA) across 415 assays (115 tetracycline, 300 FA). Bacteriophage lysates were incubated with recipients and presumed transductants quantified on antimicrobial-supplemented agar plates. Tetracycline resistance transduction from MRSP and MRSA to methicillin-susceptible S. pseudintermedius (MSSP) was confirmed by PCR in 15/115 assays. No FA-resistance transfer occurred, confirmed by negative fusB/fusC PCR, but colonies resulting from FA assays had high MICs (≥32 mg/L) and showed mutations in fusA, two at a novel position (F88L), nine at H457[Y/N/L]. Horizontal gene transfer of tetracycline-resistance confirms that resistance genes can be shared between coagulase-positive staphylococci from different hosts. Cross-species AMR transmission highlights the importance of good antimicrobial stewardship across humans and veterinary species to support One Health.

8.
Front Immunol ; 11: 857, 2020.
Article in English | MEDLINE | ID: mdl-32477348

ABSTRACT

Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.


Subject(s)
Antigens, CD/metabolism , Infections/immunology , Membrane Glycoproteins/metabolism , Neutrophils/metabolism , Receptors, Immunologic/metabolism , Humans , Immunity, Innate , Immunomodulation , Neutrophils/immunology
9.
J Immunol ; 204(4): 954-966, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31915259

ABSTRACT

Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.


Subject(s)
Antigens, CD/metabolism , Neutrophils/immunology , Receptors, Fc/metabolism , Receptors, Immunologic/metabolism , Staphylococcal Infections/immunology , Antigens, CD/genetics , Antigens, CD/isolation & purification , Cell Differentiation/immunology , Cell Line , Down-Regulation/immunology , Humans , Neutrophil Activation , Neutrophils/metabolism , Phagocytosis , Primary Cell Culture , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Staphylococcal Infections/microbiology , Staphylococcus capitis/immunology
10.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30833331

ABSTRACT

Gastrointestinal (GI) colonization of 2-day-old (P2) rat pups with Escherichia coli K1 results in translocation of the colonizing bacteria across the small intestine, bacteremia, and invasion of the meninges, with animals frequently succumbing to lethal infection. Infection, but not colonization, is strongly age dependent; pups become progressively less susceptible to infection over the P2-to-P9 period. Colonization leads to strong downregulation of the gene encoding trefoil factor 2 (Tff2), preventing maturation of the protective mucus barrier in the small intestine. Trefoil factors promote mucosal homeostasis. We investigated the contribution of Tff2 to protection of the neonatal rat from E. coli K1 bacteremia and tissue invasion. Deletion of tff2, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, sensitized P9 pups to E. coli K1 bacteremia. There were no differences between tff2-/- homozygotes and the wild type with regard to the dynamics of GI colonization. Loss of the capacity to elaborate Tff2 did not impact GI tract integrity or the thickness of the small-intestinal mucus layer but, in contrast to P9 wild-type pups, enabled E. coli K1 bacteria to gain access to epithelial surfaces in the distal region of the small intestine and exploit an intracellular route across the epithelial monolayer to enter the blood circulation via the mesenteric lymphatic system. Although primarily associated with the mammalian gastric mucosa, we conclude that loss of Tff2 in the developing neonatal small intestine enables the opportunistic neonatal pathogen E. coli K1 to enter the compromised mucus layer in the distal small intestine prior to systemic invasion and infection.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , Immunity, Innate/immunology , Neonatal Sepsis/immunology , Trefoil Factor-2/immunology , Animals , Animals, Newborn , Disease Models, Animal , Humans , Rats
11.
Vet Res ; 49(1): 115, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30486901

ABSTRACT

Staphylococcus aureus is a versatile opportunistic pathogen, causing disease in human and animal species. Its pathogenicity is linked to the ability of S. aureus to secrete immunomodulatory molecules. These evasion proteins bind to host receptors or their ligands, resulting in inhibitory effects through high affinity protein-protein interactions. Staphylococcal evasion molecules are often species-specific due to differences in host target proteins between species. We recently solved the crystal structure of murine TLR2 in complex with immunomodulatory molecule staphylococcal superantigen-like protein 3 (SSL3), which revealed the essential residues within SSL3 for TLR2 inhibition. In this study we aimed to investigate the molecular basis of the interaction on the TLR2 side. The SSL3 binding region on murine TLR2 was compared to that of other species through sequence alignment and homology modeling, which identified interspecies differences. To examine whether this resulted in altered SSL3 activity on the corresponding TLR2s, bovine, equine, human, and murine TLR2 were stably expressed in HEK293T cells and the ability of SSL3 to inhibit TLR2 was assessed. We found that SSL3 was unable to inhibit bovine TLR2. Subsequent loss and gain of function mutagenesis showed that the lack of inhibition is explained by the absence of two tyrosine residues in bovine TLR2 that play a prominent role in the SSL3-TLR2 interface. We found no evidence for the existence of allelic SSL3 variants that have adapted to the bovine host. Thus, within this paper we reveal the molecular determinants of the TLR2-SSL3 interaction which adds to our understanding of staphylococcal host specificity.


Subject(s)
Bacterial Proteins/pharmacology , Superantigens/pharmacology , Toll-Like Receptor 2/antagonists & inhibitors , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Cattle , Cloning, Molecular , Computer Simulation , DNA-Binding Proteins , HEK293 Cells , Horses , Humans , Models, Chemical , Models, Molecular , Protein Conformation , Species Specificity , Staphylococcus aureus/physiology
12.
J Bacteriol ; 200(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29339415

ABSTRACT

Escherichia coli K1 strains are major causative agents of invasive disease of newborn infants. The age dependency of infection can be reproduced in neonatal rats. Colonization of the small intestine following oral administration of K1 bacteria leads rapidly to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic system and evade antibacterial mechanisms in the blood may disseminate to cause organ-specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the polysialic acid capsule, are known to contribute to invasive potential, but a comprehensive picture of the factors that determine the fully virulent phenotype has not emerged so far. We constructed a library and constituent sublibraries of ∼775,000 Tn5 transposon mutants of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing (TraDIS) to identify genes required for fitness for infection of 2-day-old rats. Transposon insertions were lacking in 357 genes following recovery on selective agar; these genes were considered essential for growth in nutrient-replete medium. Colonization of the midsection of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood and blood-to-brain transits; 97 genes were required for survival in human serum. This study revealed that a large number of bacterial genes, many of which were not previously associated with systemic E. coli K1 infection, are required to realize full invasive potential.IMPORTANCEEscherichia coli K1 strains cause life-threatening infections in newborn infants. They are acquired from the mother at birth and colonize the small intestine, from where they invade the blood and central nervous system. It is difficult to obtain information from acutely ill patients that sheds light on physiological and bacterial factors determining invasive disease. Key aspects of naturally occurring age-dependent human infection can be reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing to identify genes essential for the in vitro growth of E. coli K1 and genes that contribute to the colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and cerebrospinal compartments precluded insertion site sequencing analysis, but we identified genes for survival in serum.


Subject(s)
Antigens, Bacterial/genetics , DNA Transposable Elements , Escherichia coli Infections/blood , Escherichia coli/genetics , Gastrointestinal Tract/microbiology , Genome, Bacterial , Polysaccharides, Bacterial/genetics , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Genetic Fitness , Humans , Microbial Viability/drug effects , Mutagenesis , Mutation , Rats , Rats, Wistar , Serum/microbiology , Virulence/genetics
13.
Proc Natl Acad Sci U S A ; 114(35): 9439-9444, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808028

ABSTRACT

Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein "staphylococcal peroxidase inhibitor" (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of human MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing.


Subject(s)
Peroxidase/antagonists & inhibitors , Bacterial Proteins , Gene Expression Regulation, Bacterial , Humans , Models, Molecular , Neutrophils/physiology , Phagocytosis , Protein Binding , Protein Conformation , Staphylococcus aureus/metabolism , Up-Regulation
14.
Sci Rep ; 7(1): 83, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28250440

ABSTRACT

The strong age dependency of neonatal systemic infection with Escherichia coli K1 can be replicated in the neonatal rat. Gastrointestinal (GI) colonization of two-day-old (P2) rats leads to invasion of the blood within 48 h of initiation of colonization; pups become progressively less susceptible to infection over the P2-P9 period. We show that, in animals colonized at P2 but not at P9, E. coli K1 bacteria gain access to the enterocyte surface in the mid-region of the small intestine and translocate through the epithelial cell monolayer by an intracellular pathway to the submucosa. In this region of the GI tract, the protective mucus barrier is poorly developed but matures to full thickness over P2-P9, coincident with the development of resistance to invasion. At P9, E. coli K1 bacteria are physically separated from villi by the mucus layer and their numbers controlled by mucus-embedded antimicrobial peptides, preventing invasion of host tissues.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/physiology , Intestinal Mucosa/growth & development , Intestine, Small/cytology , Animals , Animals, Newborn , Blood/microbiology , Cells, Cultured , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestine, Small/growth & development , Intestine, Small/microbiology , Organ Specificity , Paneth Cells/cytology , Paneth Cells/microbiology , Rats
15.
PLoS One ; 11(11): e0166793, 2016.
Article in English | MEDLINE | ID: mdl-27861552

ABSTRACT

Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2-6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Mutation , Animals , Animals, Newborn , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Gastrointestinal Tract/microbiology , Genome, Bacterial , Genomics , Humans , Phylogeny , Proteomics/methods , Rats , Virulence/genetics
16.
J Infect Dis ; 214(6): 916-24, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27412582

ABSTRACT

The genotoxin colibactin, synthesized by Escherichia coli, is a secondary metabolite belonging to the chemical family of hybrid polyketide/nonribosomal peptide compounds. It is produced by a complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this large cluster of genes in the E. coli genome is invariably associated with the high-pathogenicity island, encoding the siderophore yersiniabactin, which belongs to the same chemical family as colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic molecular chaperone Hsp90, which is involved in the protection of cellular proteins against a variety of environmental stresses. In contrast to eukaryotic Hsp90, the functions and client proteins of Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin is abolished in the absence of Hsp90Ec We further characterized an interplay between the Hsp90Ec molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal pathogenic E. coli This is the first report highlighting the role of heat shock protein Hps90Ec in the production of two secondary metabolites involved in E. coli virulence.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mutagens/metabolism , Peptides/metabolism , Phenols/metabolism , Polyketides/metabolism , Siderophores/metabolism , Thiazoles/metabolism , Animals , Disease Models, Animal , Endopeptidase Clp/metabolism , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Proteins/genetics , Female , Gene Deletion , HSP90 Heat-Shock Proteins/genetics , Mice, Inbred C57BL , Protein Interaction Mapping , Rats, Wistar , Virulence
17.
Infect Immun ; 83(12): 4528-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26351276

ABSTRACT

Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat.


Subject(s)
Escherichia coli/pathogenicity , Esophagus/pathology , Meningitis/pathology , Sepsis/pathology , Age Factors , Animals , Animals, Newborn , Bacterial Translocation , Brain/immunology , Brain/microbiology , Brain/pathology , Colon/immunology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/growth & development , Esophagus/immunology , Esophagus/microbiology , Gene Expression , Genes, Reporter , Intestine, Small/immunology , Intestine, Small/microbiology , Intestine, Small/pathology , Luciferases/genetics , Luciferases/metabolism , Meningitis/immunology , Meningitis/microbiology , Rats , Rats, Wistar , Sepsis/immunology , Sepsis/microbiology , Stomach/immunology , Stomach/microbiology , Stomach/pathology , Tongue/immunology , Tongue/microbiology , Tongue/pathology , Virulence
18.
Infect Immun ; 83(9): 3704-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150540

ABSTRACT

Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate.


Subject(s)
Escherichia coli Infections/metabolism , Escherichia coli/pathogenicity , Peptides/metabolism , Polyketides/metabolism , Animals , Animals, Newborn , Base Sequence , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli Infections/genetics , Genomic Islands/genetics , Immunohistochemistry , Molecular Sequence Data , Peptides/genetics , Polymerase Chain Reaction , Rats , Rats, Wistar , Virulence/physiology
19.
J Antimicrob Chemother ; 70(4): 997-1007, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25527273

ABSTRACT

OBJECTIVES: MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. METHODS: We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. RESULTS: Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. CONCLUSIONS: Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biological Evolution , Drug Resistance, Multiple, Bacterial , Staphylococcus/drug effects , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Genome, Bacterial , Humans , Interspersed Repetitive Sequences , Molecular Sequence Data , Mutation , Sequence Analysis, DNA
20.
J Vis Exp ; (92): e52018, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25408299

ABSTRACT

Investigation of the interactions between animal host and bacterial pathogen is only meaningful if the infection model employed replicates the principal features of the natural infection. This protocol describes procedures for the establishment and evaluation of systemic infection due to neuropathogenic Escherichia coli K1 in the neonatal rat. Colonization of the gastrointestinal tract leads to dissemination of the pathogen along the gut-lymph-blood-brain course of infection and the model displays strong age dependency. A strain of E. coli O18:K1 with enhanced virulence for the neonatal rat produces exceptionally high rates of colonization, translocation to the blood compartment and invasion of the meninges following transit through the choroid plexus. As in the human host, penetration of the central nervous system is accompanied by local inflammation and an invariably lethal outcome. The model is of proven utility for studies of the mechanism of pathogenesis, for evaluation of therapeutic interventions and for assessment of bacterial virulence.


Subject(s)
Disease Models, Animal , Escherichia coli Infections/microbiology , Escherichia coli/pathogenicity , Animals , Animals, Newborn , Choroid Plexus/microbiology , Female , Rats , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...