Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Sci Total Environ ; 768: 144459, 2021 May 10.
Article En | MEDLINE | ID: mdl-33454471

Resilience-informed water quality management embraces the growing environmental challenges and provides greater accuracy by unpacking the systems' characteristics in response to failure conditions in order to identify more effective opportunities for intervention. Assessing the resilience of water quality requires complex analysis of influential parameters which can be challenging, time consuming and costly to compute. It may also require building detailed conceptual and/or physically process-based models that are difficult to build, calibrate and validate. This study utilises Artificial Neural Network (ANN) to develop a novel application to predict water quality resilience to simplify resilience evaluation. The Fuzzy Analytic Hierarchy Process method is used to rank water basins based on their level of resilience and to identify the ones that demand prompt restoration strategies. The commonly used 'magnitude * duration of being in failure state' quantification method has been used to formulate and evaluate resilience. A 17-years long water quality dataset from the 22 water basins in the State of São Paulo, Brazil, was used to train and test the ANN model. The overall agreement between the measured and simulated WQI resilience values is satisfactory and hence, can be used by planners and decision makers for improved water management. Moreover, comparative analyses show similarities and differences between the 'level of criticalities' reported in each zone by Environment Agency of the state of São Paulo (CETESB) and by the resilience model in this study.

2.
J Environ Manage ; 275: 111173, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32866923

The necessity of incorporating a resilience-informed approach into urban planning and its decision-making is felt now more than any time previously, particularly in low and middle income countries. In order to achieve a successful transition to sustainable, resilient and cost-effective cities, there is a growing attention given to more effective integration of nature-based solutions, such as Sustainable Drainage Systems (SuDS), with other urban components. The experience of SuDS integration with urban planning, in developed cities, has proven to be an effective strategy with a wide range of advantages and lower costs. The effective design and implementation of SuDS requires a multi-objective approach by which all four pillars of SuDS design (i.e., water quality, water quantity, amenity and biodiversity) are considered in connection to other urban, social, and economic aspects and constraints. This study develops a resilience-driven multi-objective optimisation model aiming to provide a Pareto-front of optimised solutions for effective incorporation of SuDS into (peri)urban planning, applied to a case study in Brazil. This model adopts the SuDS's two pillars of water quality and water quantity as the optimisation objectives with its level of spatial distribution as decision variables. Also, an improved quality of life index (iQoL) is developed to re-evaluate the optimal engineering solutions to encompass the amenity and biodiversity pillars of SuDS. Rain barrels, green roofs, bio-retention tanks, vegetation grass swales and permeable pavements are the suitable SuDS options identified in this study. The findings show that the most resilient solutions are costly but this does not guarantee higher iQoL values. Bio-retention tanks and grass swales play effective roles in promotion of water quality resilience but this comes with considerable increase in costs. Permeable pavements and green roofs are effective strategies when flood resilience is a priority. Rain barrel is a preferred solution due to the dominance of residential areas in the study area and the lower cost of this option.


Quality of Life , Rain , Brazil , Cities , Floods
3.
Nucleic Acids Res ; 41(11): e113, 2013 Jun.
Article En | MEDLINE | ID: mdl-23580552

One of the primary aims of synthetic biology is to (re)design metabolic pathways towards the production of desired chemicals. The fast pace of developments in molecular biology increasingly makes it possible to experimentally redesign existing pathways and implement de novo ones in microbes or using in vitro platforms. For such experimental studies, the bottleneck is shifting from implementation of pathways towards their initial design. Here, we present an online tool called 'Metabolic Tinker', which aims to guide the design of synthetic metabolic pathways between any two desired compounds. Given two user-defined 'target' and 'source' compounds, Metabolic Tinker searches for thermodynamically feasible paths in the entire known metabolic universe using a tailored heuristic search strategy. Compared with similar graph-based search tools, Metabolic Tinker returns a larger number of possible paths owing to its broad search base and fast heuristic, and provides for the first time thermodynamic feasibility information for the discovered paths. Metabolic Tinker is available as a web service at http://osslab.ex.ac.uk/tinker.aspx. The same website also provides the source code for Metabolic Tinker, allowing it to be developed further or run on personal machines for specific applications.


Metabolic Networks and Pathways , Software , Algorithms , Internet , Metabolic Engineering , Thermodynamics
4.
Evol Comput ; 20(1): 1-26, 2012.
Article En | MEDLINE | ID: mdl-21591887

In recent years an increasing number of real-world many-dimensional optimisation problems have been identified across the spectrum of research fields. Many popular evolutionary algorithms use non-dominance as a measure for selecting solutions for future generations. The process of sorting populations into non-dominated fronts is usually the controlling order of computational complexity and can be expensive for large populations or for a high number of objectives. This paper presents two novel methods for non-dominated sorting: deductive sort and climbing sort. The two new methods are compared to the fast non-dominated sort of NSGA-II and the non-dominated rank sort of the omni-optimizer. The results demonstrate the improved efficiencies of the deductive sort and the reductions in comparisons that can be made when applying inferred dominance relationships defined in this paper.


Algorithms , Models, Theoretical , Software , Biological Evolution , Classification , Computer Simulation , Logic
...