Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
J Med Chem ; 67(16): 14466-14477, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39088797

ABSTRACT

Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Pyrazoles , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Drug Discovery , Pyrazines/pharmacology , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Mice , Mutation , Rats
2.
ACS Pharmacol Transl Sci ; 7(3): 716-732, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481683

ABSTRACT

This study evaluated the underlying mechanistic links between genetic variability in vitamin K metabolic pathway genes (CYP4F2 and CYP4F11) and phylloquinone hydroxylation activity using genotype- and haplotype-based approaches. Specifically, we characterized genetic variability in the CYP4F2/CYP4F11 locus and compared common single allele genotypes and common haplotypes as predictors of hepatic gene expression, enzyme abundance, and phylloquinone (VK1) ω-hydroxylation kinetics. We measured CYP4F2 and CYP4F11 mRNA levels, CYP4F2 and CYP4F11 protein abundances, and the VK1 concentration-dependent ω-hydroxylation rate in matched human liver nucleic acid and microsome samples, utilizing a novel in vitro population modeling approach. Results indicate that accounting for the CYP4F2*3 allele alone is sufficient to capture most of the genetic-derived variability in the observed phenotypes. Additionally, our findings highlight the important contribution that CYP4F11 makes toward vitamin K metabolism in the human liver.

3.
Am J Hum Genet ; 108(9): 1735-1751, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314704

ABSTRACT

CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Mutation, Missense , Prescription Drugs/metabolism , Saccharomyces cerevisiae/enzymology , Xenobiotics/metabolism , Binding Sites , Cytochrome P-450 CYP2C9/chemistry , Cytochrome P-450 CYP2C9/genetics , Enzyme Assays , Gene Library , High-Throughput Screening Assays , Humans , Models, Molecular , Mutagenesis, Site-Directed , Phenytoin/chemistry , Polymorphism, Genetic , Prescription Drugs/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Transgenes , Warfarin/chemistry , Warfarin/metabolism , Xenobiotics/chemistry
4.
Xenobiotica ; 51(8): 901-915, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993844

ABSTRACT

8-[(1H-1,2,3-benzotriazol-1-yl)amino]octanoic acid (8-BOA) was recently identified as a selective and potent mechanism-based inactivator (MBI) of breast cancer-associated CYP4Z1 and exhibited favourable inhibitory activity in vitro, thus meriting in vivo characterization.The pharmacokinetics and metabolism of 8-BOA in rats was examined after a single IV bolus dose of 10 mg/kg. A biphasic time-concentration profile resulted in relatively low clearance and a prolonged elimination half-life.The major circulating metabolites identified in plasma were products of ß-oxidation; congeners losing two and four methylene groups accounted for >50% of metabolites by peak area. The -(CH2)2 product was characterized previously as a CYP4Z1 MBI and so represents an active metabolite that may contribute to the desired pharmacological effect.Ex vivo analysis of total CYP content in rat liver and kidney microsomes showed that off-target CYP inactivation was minimal; liver microsomal probe substrate metabolism also demonstrated low off-target inactivation. Standard clinical chemistries provided no indication of acute toxicity.In silico simulations using the free concentration of 8-BOA in plasma suggested that the in vivo dose used here may effectively inactivate CYP4Z1 in a xenografted tumour.


Subject(s)
Cytochrome P-450 Enzyme System , Microsomes, Liver , Animals , Caprylates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 4/metabolism , Humans , Microsomes, Liver/metabolism , Oxidation-Reduction , Rats
5.
Toxicology ; 444: 152582, 2020 11.
Article in English | MEDLINE | ID: mdl-32905824

ABSTRACT

Ochratoxin A (OTA) is one of the most abundant mycotoxin contaminants in food stuffs and possesses carcinogenic, nephrotoxic, teratogenic, and immunotoxic properties. Specifically, a major concern is severe nephrotoxicity, which is characterized by degeneration of epithelial cells of the proximal tubules and interstitial fibrosis. However, the mechanism of OTA toxicity, as well as the genetic risk factors contributing to its toxicity in humans has been elusive due to the lack of adequate models that fully recapitulate human kidney function in vitro. The present study attempts to evaluate dose-response relationships, identify the contribution of active transport proteins that govern the renal disposition of OTA, and determine the role of metabolism in the bioactivation and detoxification of OTA using a 3D human kidney proximal tubule microphysiological system (kidney MPS). We demonstrated that LC50 values of OTA in kidney MPS culture (0.375-1.21 µM) were in agreement with clinically relevant toxic concentrations of OTA in urine. Surprisingly, no enhancement of kidney injury biomarkers was evident in the effluent of the kidney MPS after OTA exposure despite significant toxicity observed by LIVE/DEAD staining. Instead, these biomarkers decreased in an OTA concentration-dependent manner. Furthermore, the effect of 1-aminobenzotriazole (ABT) and 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), pan-inhibitors of P450 and glutathione S-transferase (GST) enzymes, respectively, on OTA-induced toxicity in kidney MPS was examined. These studies revealed significant enhancement of OTA-induced toxicity by NBDHEX (3 µM) treatment, whereas ABT (1 mM) treatment decreased OTA-induced toxicity, suggesting roles for GSTs and P450 enzymes in the detoxification and bioactivation of OTA, respectively. Analysis of transcriptional changes using RNA-sequencing of kidney MPS treated with different concentrations of OTA revealed downregulation of several nuclear factor (erythroid derived-2)-like 2 (NRF2)-regulated genes by OTA treatment, including GSTs. The transcriptional repression of GSTs is likely playing a key role in OTA toxicity via attenuation of glutathione conjugation/detoxification. The sequential molecular events may explain the mechanism of toxicity associated with OTA. Additionally, OTA transport studies using kidney MPS in the presence and absence of probenecid (1 mM) suggested a role for organic anionic membrane transporter(s) in the kidney specific disposition of OTA. Our findings provide a clearer understanding of the mechanism of OTA-induced kidney injury, which may support changes in risk assessment, regulatory agency policies on allowable exposure levels, and determination of the role of genetic factors in populations at risk for OTA nephrotoxicity.


Subject(s)
Epithelial Cells/drug effects , Kidney Diseases/chemically induced , Kidney Tubules, Proximal/cytology , Models, Biological , Ochratoxins/toxicity , Dose-Response Relationship, Drug , Epithelial Cells/pathology , Humans
6.
Drug Metab Dispos ; 48(10): 1018-1027, 2020 10.
Article in English | MEDLINE | ID: mdl-32591416

ABSTRACT

Botanical and other natural products (NPs) are often coconsumed with prescription medications, presenting a risk for cytochrome P450 (P450)-mediated NP-drug interactions. The NP goldenseal (Hydrastis canadensis) has exhibited antimicrobial activities in vitro attributed to isoquinoline alkaloids contained in the plant, primarily berberine, (-)-ß-hydrastine, and to a lesser extent, hydrastinine. These alkaloids contain methylenedioxyphenyl rings, structural alerts with potential to inactivate P450s through formation of metabolic intermediate complexes. Time-dependent inhibition experiments were conducted to evaluate their ability to inhibit major P450 activities in human liver microsomes by using a cocktail of isozyme-specific substrate probes. Berberine inhibited CYP2D6 (dextromethorphan O-demethylation; K I = 2.7 µM, kinact = 0.065 minute-1) and CYP3A4/5 (midazolam 1'-hydroxylation; K I = 14.8 µM, kinact = 0.019 minute-1); (-)-ß-hydrastine inhibited CYP2C9 (diclofenac 4'-hydroxylation; K I = 49 µM, kinact = 0.036 minute-1), CYP2D6 (K I > 250 µM, kinact > 0.06 minute-1), and CYP3A4/5 (K I = 28 µM, kinact = 0.056 minute-1); and hydrastinine inhibited CYP2D6 (K I = 37 µM, kinact = 0.049 minute-1) activity. Berberine additionally exhibited allosteric effects on midazolam hydroxylation, showing both positive and negative heterotropic cooperativity. Experiments with recombinant isozymes showed that berberine activated midazolam 1'-hydroxylation by CYP3A5, lowering K m(app), but showed mixed inhibition and negative cooperativity toward this reaction when catalyzed by CYP3A4. Berberine inactivated CYP3A4 at a much faster rate than CYP3A5 and was a noncompetitive inhibitor of midazolam 4-hydroxylation by CYP3A4 but a strong mixed inhibitor of the CYP3A5 catalyzed reaction. These complex kinetics should be considered when extrapolating the risk for NP-drug interactions involving goldenseal. SIGNIFICANCE STATEMENT: Robust kinetic parameters were determined for the reversible and time-dependent inhibition of CYP2C9, CYP2D6, and CYP3A4/5 activities in human liver microsomes by major component isoquinoline alkaloids contained in the botanical natural product goldenseal. The alkaloid berberine also exhibited opposing, isozyme-specific allosteric effects on midazolam hydroxylation mediated by recombinant CYP3A4 (inhibition) and CYP3A5 (activation). These data will inform the development of a physiologically based pharmacokinetic model that can be used to predict potential clinically relevant goldenseal-drug interactions.


Subject(s)
Alkaloids/pharmacokinetics , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Hydrastis/chemistry , Plant Extracts/pharmacokinetics , Prescription Drugs/pharmacokinetics , Alkaloids/administration & dosage , Allosteric Regulation , Arabidopsis Proteins , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Drug Evaluation, Preclinical , Drug Interactions , Humans , Inhibitory Concentration 50 , Microsomes, Liver , Nuclear Proteins , Oxidation-Reduction , Plant Extracts/administration & dosage , Prescription Drugs/administration & dosage
7.
J Pharmacol Exp Ther ; 374(2): 233-240, 2020 08.
Article in English | MEDLINE | ID: mdl-32423989

ABSTRACT

CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.


Subject(s)
Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Indigenous Peoples/genetics , Alaska/ethnology , Escherichia coli/genetics , Gene Expression , HEK293 Cells , Humans , Proteolysis , Trypsin/metabolism
8.
J Med Chem ; 63(9): 4824-4836, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32302132

ABSTRACT

Mammary-tissue-restricted cytochrome P450 4Z1 (CYP4Z1) has garnered interest for its potential role in breast cancer progression. CYP4Z1-dependent metabolism of arachidonic acid preferentially generates 14,15-epoxyeicosatrienoic acid (14,15-EET), a metabolite known to influence cellular proliferation, migration, and angiogenesis. In this study, we developed time-dependent inhibitors of CYP4Z1 designed as fatty acid mimetics linked to the bioactivatable pharmacophore, 1-aminobenzotriazole (ABT). The most potent analogue, 8-[(1H-benzotriazol-1-yl)amino]octanoic acid (7), showed a 60-fold lower shifted-half-maximal inhibitory concentration (IC50) for CYP4Z1 compared to ABT, efficient mechanism-based inactivation of the enzyme evidenced by a KI = 2.2 µM and a kinact = 0.15 min-1, and a partition ratio of 14. Furthermore, 7 exhibited low off-target inhibition of other CYP isozymes. Finally, low micromolar concentrations of 7 inhibited 14,15-EET production in T47D breast cancer cells transfected with CYP4Z1. This first-generation, selective mechanism-based inhibitor (MBI) will be a useful molecular tool to probe the biochemical role of CYP4Z1 and its association with breast cancer.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P450 Family 4/antagonists & inhibitors , Fatty Acids/pharmacology , Triazoles/pharmacology , Arachidonic Acid/metabolism , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/metabolism , Drug Design , Fatty Acids/chemical synthesis , Fatty Acids/metabolism , Humans , Microsomes, Liver/metabolism , Oxidation-Reduction , Triazoles/chemical synthesis , Triazoles/metabolism
9.
Clin Transl Sci ; 13(1): 147-156, 2020 01.
Article in English | MEDLINE | ID: mdl-31536170

ABSTRACT

The cytochrome P450 2D6 (CYP2D6) gene locus is challenging to accurately genotype due to numerous single nucleotide variants and complex structural variation. Our goal was to determine whether the CYP2D6 genotype-phenotype correlation is improved when diplotype assignments incorporate structural variation, identified by the bioinformatics tool Stargazer, with next-generation sequencing data. Using CYP2D6 activity measured with substrates dextromethorphan and metoprolol, activity score explained 40% and 34% of variability in metabolite formation rates, respectively, when diplotype calls incorporated structural variation, increasing from 36% and 31%, respectively, when diplotypes did not incorporate structural variation. We also investigated whether the revised Clinical Pharmacogenetics Implementation Consortium (CPIC) recommendations for translating genotype to phenotype improve CYP2D6 activity predictions over the current system. Although the revised recommendations do not improve the correlation between activity score and CYP2D6 activity, perhaps because of low frequency of the CYP2D6*10 allele, the correlation with metabolizer phenotype group was significantly improved for both substrates. We also measured the function of seven rare coding variants: one (A449D) exhibited decreased (44%) and another (R474Q) increased (127%) activity compared with reference CYP2D6.1 protein. Allele-specific analysis found that A449D is part of a novel CYP2D6*4 suballele, CYP2D6*4.028. The novel haplotype containing R474Q was designated CYP2D6*138 by PharmVar; another novel haplotype containing R365H was designated CYP2D6*139. Accuracy of CYP2D6 phenotype prediction is improved when the CYP2D6 gene locus is interrogated using next-generation sequencing coupled with structural variation analysis. Additionally, revised CPIC genotype to phenotype translation recommendations provides an improvement in assigning CYP2D6 activity.


Subject(s)
Computational Biology , Cytochrome P-450 CYP2D6/genetics , Pharmacogenomic Testing/methods , Alleles , Cytochrome P-450 CYP2D6/metabolism , Dextromethorphan/pharmacokinetics , Dextrorphan/analysis , Dextrorphan/metabolism , Genetic Association Studies , Genetic Loci/genetics , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Metoprolol/analogs & derivatives , Metoprolol/analysis , Metoprolol/metabolism , Metoprolol/pharmacokinetics , Microsomes, Liver/metabolism , Pharmacogenomic Testing/standards , Polymorphism, Genetic , Practice Guidelines as Topic
10.
Chem Res Toxicol ; 32(12): 2488-2498, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31799839

ABSTRACT

Cytochrome P450 4B1 (CYP4B1) has been explored as a candidate enzyme in suicide gene systems for its ability to bioactivate the natural product 4-ipomeanol (IPO) to a reactive species that causes cytotoxicity. However, metabolic limitations of IPO necessitate discovery of new "pro-toxicant" substrates for CYP4B1. In the present study, we examined a series of synthetically facile N-alkyl-3-furancarboxamides for cytotoxicity in HepG2 cells expressing CYP4B1. This compound series maintains the furan warhead of IPO while replacing its alcohol group with alkyl chains of varying length (C1-C8). Compounds with C3-C6 carbon chain lengths showed similar potency to IPO (LD50 ≈ 5 µM). Short chain analogs (<3 carbons) and long chain analogs (>6 carbons) exhibited reduced toxicity, resulting in a parabolic relationship between alkyl chain length and cytotoxicity. A similar parabolic relationship was observed between alkyl chain length and reactive intermediate formation upon trapping of the putative enedial as a stable pyrrole adduct in incubations with purified recombinant rabbit CYP4B1 and common physiological nucleophiles. These parabolic relationships reflect the lower affinity of shorter chain compounds for CYP4B1 and increased ω-hydroxylation of the longer chain compounds by the enzyme. Furthermore, modest time-dependent inhibition of CYP4B1 by N-pentyl-3-furancarboxamide was completely abolished when trapping agents were added, demonstrating escape of reactive intermediates from the enzyme after bioactivation. An insulated CYP4B1 active site may explain the rarely observed direct correlation between adduct formation and cell toxicity reported here.


Subject(s)
Amides/toxicity , Aryl Hydrocarbon Hydroxylases/metabolism , Furans/toxicity , Activation, Metabolic , Amides/chemical synthesis , Amides/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/chemistry , Catalytic Domain , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme Inhibitors/toxicity , Furans/chemical synthesis , Furans/metabolism , Hep G2 Cells , Humans , Hydroxylation , Kinetics , Molecular Docking Simulation , Molecular Structure , Protein Binding , Rabbits , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/toxicity
11.
J Lipid Res ; 60(4): 892-899, 2019 04.
Article in English | MEDLINE | ID: mdl-30670472

ABSTRACT

Vitamin K (VK), in both its phylloquinone and menaquinone forms, has been hypothesized to undergo ω- and ß-oxidation on its hydrophobic side chain in order to generate the observed urinary metabolites, K acid I and K acid II, which are excreted primarily as glucuronide conjugates. Synthetic standards of K acid I, K acid II, and a putative intermediate metabolite, menaquinone (MK)1 ω-COOH, were used to develop and optimize a new atmospheric pressure negative chemical ionization LC-MS/MS assay for the quantitation of these compounds in urine from untreated individuals and subjects treated with a high dose VK supplement. VK catabolites were extracted from urine, deconjugated, and converted to their methyl ester derivatives using previously reported methodology. The assay showed a high degree of sensitivity, with limits of detection below 10-50 fmol of metabolite per milliliter of urine, as well as an inter-assay precision of 8-12%. Metabolite standards provided unambiguous evidence for MK1 ω-COOH as a new human urinary metabolite of VK. This assay provides a minimally invasive, highly sensitive, and specific alternative for monitoring VK status in humans.


Subject(s)
Vitamin K/metabolism , Vitamin K/urine , Adult , Calibration , Chromatography, Liquid , Dietary Supplements , Healthy Volunteers , Humans , Male , Molecular Structure , Tandem Mass Spectrometry , Vitamin K/administration & dosage
12.
J Pharmacol Exp Ther ; 368(2): 308-316, 2019 02.
Article in English | MEDLINE | ID: mdl-30409834

ABSTRACT

A potential CYP4B1 suicide gene application in engineered T-cell treatment of blood cancers has revived interest in the use of 4-ipomeanol (IPO) in gene-directed enzyme prodrug therapy, in which disposition of the administered compound may be critical. IPO contains one chiral center at the carbon bearing a secondary alcohol group; it was of interest to determine the effect of stereochemistry on 1) CYP4B1-mediated bioactivation and 2) (UGT)-mediated glucuronidation. First, (R)-IPO and (S)-IPO were synthesized and used to assess cytotoxicity in HepG2 cells expressing rabbit CYP4B1 and re-engineered human CYP4B1, where the enantiomers were found to be equipotent. Next, a sensitive UPLC-MS/MS assay was developed to measure the IPO-glucuronide diastereomers and product stereoselectivity in human tissue microsomes. Human liver and kidney microsomes generated (R)- and (S)-IPO-glucuronide diastereomers in ratios of 57:43 and 79:21, respectively. In a panel of 13 recombinantly expressed UGTs, UGT1A9 and UGT2B7 were the major isoforms responsible for IPO glucuronidation. (R)-IPO-glucuronide diastereoselectivity was apparent with each recombinant UGT, except UGT2B15 and UGT2B17, which favored the formation of (S)-IPO-glucuronide. Incubations with IPO and the UGT1A9-specific chemical inhibitor niflumic acid significantly decreased glucuronidation in human kidney, but only marginally in human liver microsomes, consistent with known tissue expression patterns of UGTs. We conclude that IPO glucuronidation in human kidney is mediated by UGT1A9 and UGT2B7. In human liver, it is mediated primarily by UGT2B7 and, to a lesser extent, UGT1A9 and UGT2B15. Overall, the lack of pronounced stereoselectivity for IPO's bioactivation in CYP4B1-transfected HepG2 cells, or for hepatic glucuronidation, suggests the racemate is an appropriate choice for use in suicide gene therapies.


Subject(s)
Glucuronides/metabolism , Microsomes/metabolism , Terpenes/chemistry , Terpenes/metabolism , Toxins, Biological/chemistry , Toxins, Biological/metabolism , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Microsomes/drug effects , Stereoisomerism , Terpenes/toxicity , Toxins, Biological/toxicity
13.
Drug Metab Dispos ; 45(12): 1364-1371, 2017 12.
Article in English | MEDLINE | ID: mdl-29018033

ABSTRACT

CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC50 ∼15 µM). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE.


Subject(s)
Breast Neoplasms/metabolism , Cytochrome P450 Family 4/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Lauric Acids/metabolism , Amidines/pharmacology , Cytochrome P450 Family 4/antagonists & inhibitors , Cytochrome P450 Family 4/chemistry , Cytochrome P450 Family 4/isolation & purification , Disease Progression , Humans , Hydroxylation/drug effects , Interleukin-1 Receptor-Associated Kinases , Mass Spectrometry , Microsomes, Liver , Molecular Docking Simulation , Oxidation-Reduction/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae
14.
Drug Metab Dispos ; 43(11): 1661-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26296708

ABSTRACT

In this study, IC50 shift and time-dependent inhibition (TDI) experiments were carried out to measure the ability of amiodarone (AMIO), and its circulating human metabolites, to reversibly and irreversibly inhibit CYP1A2, CYP2C9, CYP2D6, and CYP3A4 activities in human liver microsomes. The [I]u/Ki,u values were calculated and used to predict in vivo AMIO drug-drug interactions (DDIs) for pharmaceuticals metabolized by these four enzymes. Based on these values, the minor metabolite N,N-didesethylamiodarone (DDEA) is predicted to be the major cause of DDIs with xenobiotics primarily metabolized by CYP1A2, CYP2C9, or CYP3A4, while AMIO and its N-monodesethylamiodarone (MDEA) derivative are the most likely cause of interactions involving inhibition of CYP2D6 metabolism. AMIO drug interactions predicted from the reversible inhibition of the four P450 activities were found to be in good agreement with the magnitude of reported clinical DDIs with lidocaine, warfarin, metoprolol, and simvastatin. The TDI experiments showed DDEA to be a potent inactivator of CYP1A2 (KI = 0.46 µM, kinact = 0.030 minute(-1)), while MDEA was a moderate inactivator of both CYP2D6 (KI = 2.7 µM, kinact = 0.018 minute(-1)) and CYP3A4 (KI = 2.6 µM, kinact = 0.016 minute(-1)). For DDEA and MDEA, mechanism-based inactivation appears to occur through formation of a metabolic intermediate complex. Additional metabolic studies strongly suggest that CYP3A4 is the primary microsomal enzyme involved in the metabolism of AMIO to both MDEA and DDEA. In summary, these studies demonstrate both the diversity of inhibitory mechanisms with AMIO and the need to consider metabolites as the culprit in inhibitory P450-based DDIs.


Subject(s)
Amiodarone/metabolism , Amiodarone/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Microsomes, Liver/metabolism , Binding Sites/physiology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Drug Interactions/physiology , Humans , Microsomes, Liver/drug effects
15.
PLoS One ; 9(10): e110054, 2014.
Article in English | MEDLINE | ID: mdl-25333274

ABSTRACT

Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 10(4) M(-1)s(-1), orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL.


Subject(s)
Aryldialkylphosphatase/metabolism , Carboxylic Ester Hydrolases/metabolism , Liver/enzymology , Aryldialkylphosphatase/genetics , Carboxylic Ester Hydrolases/genetics , Humans
16.
Blood ; 123(4): 582-9, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24297869

ABSTRACT

Warfarin and other 4-hydroxycoumarins inhibit vitamin K epoxide reductase (VKOR) by depleting reduced vitamin K that is required for posttranslational modification of vitamin K-dependent clotting factors. In vitro prediction of the in vivo potency of vitamin K antagonists is complicated by the complex multicomponent nature of the vitamin K cycle. Here we describe a sensitive assay that enables quantitative analysis of γ-glutamyl carboxylation and its antagonism in live cells. We engineered a human embryonic kidney (HEK) 293-derived cell line (HEK 293-C3) to express a chimeric protein (F9CH) comprising the Gla domain of factor IX fused to the transmembrane and cytoplasmic regions of proline-rich Gla protein 2. Maximal γ-glutamyl carboxylation of F9CH required vitamin K supplementation, and was dose-dependently inhibited by racemic warfarin at a physiologically relevant concentration. Cellular γ-glutamyl carboxylation also exhibited differential VKOR inhibition by warfarin enantiomers (S > R) consistent with their in vivo potencies. We further analyzed the structure-activity relationship for inhibition of γ-glutamyl carboxylation by warfarin metabolites, observing tolerance to phenolic substitution at the C-5 and especially C-6, but not C-7 or C-8, positions on the 4-hydroxycoumarin nucleus. After correction for in vivo concentration and protein binding, 10-hydroxywarfarin and warfarin alcohols were predicted to be the most potent inhibitory metabolites in vivo.


Subject(s)
Vitamin K/antagonists & inhibitors , Vitamin K/metabolism , Warfarin/chemistry , Alcohols/chemistry , Anticoagulants/chemistry , Doxycycline/chemistry , Factor IX/chemistry , Flow Cytometry , HEK293 Cells , Humans , Inhibitory Concentration 50 , Liver/metabolism , Phenol/chemistry , Protein Binding , Protein Structure, Tertiary , Stereoisomerism , Structure-Activity Relationship , Vitamin K/chemistry , Vitamin K Epoxide Reductases/antagonists & inhibitors , Vitamin K Epoxide Reductases/metabolism , Warfarin/analogs & derivatives
17.
PLoS One ; 8(12): e84582, 2013.
Article in English | MEDLINE | ID: mdl-24367676

ABSTRACT

The tyrosine phosphatase activity of the phosphatase-transactivator protein Eyes Absent (EYA) is angiogenic through its roles in endothelial cell migration and tube formation. Benzbromarone, a known anti-gout agent, was previously identified as an inhibitor of EYA with anti-angiogenic properties. Here we show that the major metabolite of BBR, 6-hydroxy benzbromarone, is a significantly more potent inhibitor of cell migration, tubulogenesis and angiogenic sprouting. In contrast, other postulated metabolites of BBR such as 5-hydroxy benzbromaorne and 1'-hydroxy benzbromarone are less potent inhibitors of EYA tyrosine phosphatase activity as well as being less effective in cellular assays for endothelial cell migration and angiogenesis. Longer substituents at the 2 position of the benzofuran ring promoted EYA3 binding and inhibition, but were less effective in cellular assays, likely reflecting non-specific protein binding and a resulting reduction in free, bio-available inhibitor. The observed potency of 6-hydroxy benzbromarone is relevant in the context of the potential re-purposing of benzbromarone and its derivatives as anti-angiogenic agents. 6-hydroxy benzbromarone represents a metabolite with a longer half-life and greater pharmacological potency than the parent compound, suggesting that biotransformation of benzbromarone could contribute to its therapeutic activity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Benzbromarone/analogs & derivatives , Benzbromarone/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors , Analysis of Variance , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/metabolism , Animals , Benzbromarone/pharmacology , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Microtubules/drug effects , Molecular Structure , Neovascularization, Physiologic/drug effects , Structure-Activity Relationship
18.
Mol Pharmacol ; 75(6): 1337-46, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19297519

ABSTRACT

Genetic polymorphisms in VKORC1 and CYP2C9, genes controlling vitamin K(1) (VK1) epoxide reduction and (S)-warfarin metabolism, respectively, are major contributors to interindividual variability in warfarin dose. The V433M polymorphism (rs2108622) in CYP4F2 has also been associated with warfarin dose and speculatively linked to altered VK1 metabolism. Therefore, the purpose of the present study was to determine the role of CYP4F2 and the V433M polymorphism in the metabolism of VK1 by human liver. In vitro metabolic experiments with accompanying liquid chromatography-tandem mass spectrometry analysis demonstrated that recombinant CYP4F2 (Supersomes) and human liver microsomes supplemented with NADPH converted VK1 to a single product. A screen of all commercially available P450 Supersomes showed that only CYP4F2 was capable of metabolizing VK1 to this product. Steady-state kinetic analysis with recombinant CYP4F2 and with human liver microsomes revealed a substrate K(m) of 8 to 10 microM. Moreover, anti-CYP4F2 IgG, as well as several CYP4F2-selective chemical inhibitors, substantially attenuated the microsomal reaction. Finally, human liver microsomes genotyped for rs2108622 demonstrated reduced vitamin K(1) oxidation and lower CYP4F2 protein concentrations in carriers of the 433M minor allele. These data demonstrate that CYP4F2 is a vitamin K(1) oxidase and that carriers of the CYP4F2 V433M allele have a reduced capacity to metabolize VK1, secondary to an rs2108622-dependent decrease in steady-state hepatic concentrations of the enzyme. Therefore, patients with the rs2108622 polymorphism are likely to have elevated hepatic levels of VK1, necessitating a higher warfarin dose to elicit the same anticoagulant response.


Subject(s)
Anticoagulants/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Mixed Function Oxygenases/metabolism , Vitamin K 1/metabolism , Vitamins/metabolism , Warfarin/pharmacokinetics , Anticoagulants/administration & dosage , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 4 , Fluorescence , Genotype , Heterozygote , Humans , In Vitro Techniques , Microsomes, Liver/metabolism , Mixed Function Oxygenases/antagonists & inhibitors , Mixed Function Oxygenases/genetics , Oxidation-Reduction , Polymorphism, Genetic , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Vitamin K 1/analogs & derivatives , Vitamin K Epoxide Reductases , Warfarin/administration & dosage
19.
Chem Res Toxicol ; 20(12): 1833-42, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18020424

ABSTRACT

Benzbromarone (BBR) is a uricosuric agent that has been used as a treatment for chronic gout. Although never approved in the United States, BBR was recently withdrawn from European markets due to several clinical cases linking the drug to an idiosyncratic hepatotoxicity that is sometimes fatal. We report here a possible mechanism of toxicity that involves the bioactivation of BBR through sequential hydroxylation of the benzofuran ring to a catechol, which can then be further oxidized to a reactive quinone intermediate capable of adducting protein. NADPH-supplemented human liver microsomes generated a single metabolite that was identified as 6-OH BBR by comparison with the synthesized chemical standard. CYP2C9 was the major recombinant enzyme capable of catalyzing the formation of 6-OH BBR, although CYP2C19 also showed a lower degree of activity. Further oxidation of either 6-OH BBR or 5-OH BBR by human liver microsomes resulted in the formation of a dihydroxy metabolite with identical chromatographic and mass spectral properties. This product of sequential metabolism of BBR was identified as the catechol, 5,6-dihydroxybenzbromarone. Incubation of the catechol with liver microsomes, in the presence of glutathione, resulted in the formation of two glutathione adducts that could derive from a single ortho-quinone intermediate. Isoform profiling with recombinant human P450s suggested that CYP2C9 is primarily responsible for the formation of this reactive quinone intermediate.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Benzbromarone/metabolism , Catechols/metabolism , Glutathione/metabolism , Microsomes, Liver/drug effects , Uricosuric Agents/metabolism , Animals , Benzbromarone/pharmacokinetics , Benzbromarone/toxicity , Biotransformation , Chemical and Drug Induced Liver Injury/enzymology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 CYP2C9 , Humans , In Vitro Techniques , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Uricosuric Agents/pharmacokinetics , Uricosuric Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL