Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
SLAS Discov ; 29(2): 100135, 2024 Mar.
Article En | MEDLINE | ID: mdl-38101572

The cellular thermal shift assay (CETSA®) is a target engagement method widely used for preclinical characterization of small molecule compounds. CETSA® has been used for semi-quantitative readouts in whole blood with PBMC isolation, and quantitative, plate-based readouts using cell lines. However, there has been no quantitative evaluation of CETSA® in unprocessed human whole blood, which is preferred for clinical applications. Here we report two separate assay formats - Alpha CETSA® and MSD CETSA® - that require less than 100 µL of whole blood per sample without PBMC isolation. We chose RIPK1 as a proof-of-concept target and, by measuring engagement of seven different inhibitors, demonstrate high assay sensitivity and robustness. These quantitative CETSA® platforms enable possible applications in preclinical pharmacokinetic-pharmacodynamic studies, and direct target engagement with small molecules in clinical trials.


Biological Assay , Leukocytes, Mononuclear , Humans , Cell Line, Tumor , HT29 Cells , Biological Assay/methods , Research Design , Receptor-Interacting Protein Serine-Threonine Kinases
2.
Nature ; 622(7984): 850-862, 2023 Oct.
Article En | MEDLINE | ID: mdl-37794185

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Immunotherapy , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy/methods , Interferons/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
3.
Cancer Immunol Res ; 9(12): 1465-1475, 2021 12.
Article En | MEDLINE | ID: mdl-34635486

PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.


Antibodies, Monoclonal/therapeutic use , Immunity/immunology , Immunotherapy/methods , Programmed Cell Death 1 Receptor/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Humans , Mice , Phosphorylation , Signal Transduction
4.
Malar J ; 16(1): 254, 2017 06 15.
Article En | MEDLINE | ID: mdl-28619071

BACKGROUND: An effective malaria transmission-blocking vaccine (TBV) would be a major advance in the current efforts to eliminate and, ultimately, eradicate malaria. Antibodies against Plasmodium falciparum surface protein, Pfs25, are known to block parasite development in the mosquito vector. However, in initial clinical trials the limited immunogenicity of recombinant Pfs25 protein-in-adjuvant vaccines has been a challenge. METHODS: Novel human adenovirus type 5 (Ad5) vectors were used in heterologous prime boost vaccination strategies to augment the immune response against Pfs25. Specifically, an Ad5 vector that directs expression of full-length, membrane-bound Pfs25 was used as a priming immunization followed by a boost with Ad5 viral particles displaying only the Pfs25 epitope targeted by transmission-blocking antibodies 4B7 and 1D2 (Pfs25 aa 122-134) in hypervariable region 5 of the hexon capsid protein. RESULTS: This heterologous prime-boost vaccine strategy induced antibodies that significantly inhibit P. falciparum transmission to mosquitoes in a standard membrane-feeding assay. Further, immunized mice generated a robust anti-Pfs25 antibody response characterized by higher titer, higher relative avidity and a broader IgG subclass profile than observed with a homologous prime-boost with recombinant Pfs25/alum. CONCLUSION: The data suggest that focusing the immune response against defined epitopes displayed on the viral capsid is an effective strategy for transmission-blocking vaccine development.


Adenovirus Vaccines/genetics , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/biosynthesis , Epitopes/chemistry , Genetic Vectors , HEK293 Cells , HeLa Cells , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Malaria, Falciparum/transmission , Male , Mice , Mice, Inbred C57BL , Recombinant Proteins/chemistry
5.
J Exp Med ; 214(4): 895-904, 2017 04 03.
Article En | MEDLINE | ID: mdl-28302645

It is unclear whether PD-L1 on tumor cells is sufficient for tumor immune evasion or simply correlates with an inflamed tumor microenvironment. We used three mouse tumor models sensitive to PD-1 blockade to evaluate the significance of PD-L1 on tumor versus nontumor cells. PD-L1 on nontumor cells is critical for inhibiting antitumor immunity in B16 melanoma and a genetically engineered melanoma. In contrast, PD-L1 on MC38 colorectal adenocarcinoma cells is sufficient to suppress antitumor immunity, as deletion of PD-L1 on highly immunogenic MC38 tumor cells allows effective antitumor immunity. MC38-derived PD-L1 potently inhibited CD8+ T cell cytotoxicity. Wild-type MC38 cells outcompeted PD-L1-deleted MC38 cells in vivo, demonstrating tumor PD-L1 confers a selective advantage. Thus, both tumor- and host-derived PD-L1 can play critical roles in immunosuppression. Differences in tumor immunogenicity appear to underlie their relative importance. Our findings establish reduced cytotoxicity as a key mechanism by which tumor PD-L1 suppresses antitumor immunity and demonstrate that tumor PD-L1 is not just a marker of suppressed antitumor immunity.


B7-H1 Antigen/physiology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Tumor Escape , Animals , Cell Line, Tumor , Colorectal Neoplasms/immunology , Lymphocyte Activation , Melanoma/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/physiology , Tumor Microenvironment
6.
J Virol ; 85(20): 10806-13, 2011 Oct.
Article En | MEDLINE | ID: mdl-21835790

In response to viral infection, reactive oxygen species (ROS) mediate innate immune signaling or generate danger signals to activate immune cells. The mechanisms of virally induced ROS are poorly defined, however. We demonstrate that ROS are produced within minutes of adenovirus type 5 (Ad5) infection of macrophages and that oxidative stress supports Ad5-induced cytokine secretion. We show that short hairpin RNA (shRNA) knockdown of TLR9 has no effect on ROS production despite observed decreases in Ad-induced cytokine secretion. A major source of ROS in macrophages is NADPH oxidase. However, shRNA knockdown of the NADPH oxidase subunit NOX2 does not attenuate Ad-induced ROS. Induction of ROS is not observed in cells infected with a temperature-sensitive mutant of Ad2, ts1, which is defective in endosomal membrane penetration during cell entry. Further, Ad5, but not ts1, induces the release of lysosomal cathepsin B into the cytoplasm of infected cells. In agreement with this finding, we observe a loss of mitochondrial membrane potential upon Ad infection which requires Ad endosomal membrane penetration and cathepsin B activity. Overexpression of Bcl-2 attenuates Ad5-induced ROS, further supporting the role for mitochondrial membrane destabilization as the source of ROS in response to Ad5 infection. Together, these data suggest that ROS produced in response to Ad5 infection depends on the virally induced endosomal membrane rupture to release lysosomal cathepsins. Furthermore, the release of cathepsins leads to mitochondrial membrane disruption and thus the release of ROS from the mitochondria.


Adenoviridae/immunology , Cathepsin B/metabolism , Lysosomes/enzymology , Lysosomes/virology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Cytokines/metabolism , Humans , Macrophages/immunology , Macrophages/virology , Membrane Potential, Mitochondrial , Mitochondrial Membranes/physiology
...