Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 22(3): 1421-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22226656

ABSTRACT

Serotoninergic neurotransmission has been implicated in modulation of learning and memory. It has been demonstrated that 5-hydroxytryptamine(6) (5-HT(6)) receptor antagonists show beneficial effect on cognition in several animal models. Based on a pharmacophore model reported in the literature, we have designed and successfully identified a 7-benzenesulfonyl-1,2,3,4-tetrahydro-benzo[4,5]furo[2,3-c]pyridine (3a) scaffold as a novel class of 5-HT(6) receptor antagonists. Despite good activity against 5-HT(6) receptor, 3a exhibited poor liver microsome stability in mouse, rat and dog. It was demonstrated that the saturation of the double bond of the tetrahydropyridine ring of 3a enhanced metabolic stability. However the resulting compound, 4a (7-phenylsulfonyl-1,2,3,4,4a,9a-hexahydro-benzo[4,5]furo[2,3-c] pyridine-HCl salt) exhibited ∼30-fold loss in potency along with introduction of two chiral centers. In our optimization process for this series, we found that substituents at the 2 or 3 positions on the distal aryl group are important for enhancing activity against 5-HT(6). Separation of enantiomers and subsequent optimization and SAR with bis substituted phenyl sulfone provided potent 5-HT(6) antagonists with improved PK profiles in rat. A potent, selective 5-HT(6)R antagonist (15k) was identified from this study which showed good oral bioavailability (F=39%) in rat with brain penetration (B/P=2.76) and in vivo activity in a rat social recognition test.


Subject(s)
Brain/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Sulfones/chemistry , Sulfones/pharmacology , Animals , Dogs , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/drug effects , Molecular Structure , Rats , Receptors, Serotonin , Serotonin Antagonists/pharmacokinetics , Stereoisomerism
2.
J Med Chem ; 55(1): 115-25, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22141319

ABSTRACT

Chemical strategies to mitigate cytochrome P450-mediated bioactivation of novel 2,7-disubstituted pyrrolo[2,1-f][1,2,4]triazine ALK inhibitors are described along with synthesis and biological activity. Piperidine-derived analogues showing minimal microsomal reactive metabolite formation were discovered. Potent, selective, and metabolically stable ALK inhibitors from this class were identified, and an orally bioavailable compound (32) with antitumor efficacy in ALK-driven xenografts in mouse models was extensively characterized.


Subject(s)
Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , Pyrroles/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Triazines/chemical synthesis , Administration, Oral , Anaplastic Lymphoma Kinase , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , In Vitro Techniques , Mice , Mice, SCID , Microsomes, Liver/metabolism , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazines/pharmacology , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 21(24): 7261-4, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22061645

ABSTRACT

Anaplastic lymphoma kinase (ALK) is transmembrane receptor tyrosine kinase, with oncogenic variants that have been implicated in ALCL, NSCLC and other cancers. Screening of a VEGFR2-biased kinase library resulted in identification of 1 which showed cross-reactivity with ALK. SAR on the indole segment of 1 showed that a subtle structural modification (the ethoxy group of 1 changed to a benzyloxy to generate 5a) enhanced potency (ALK), selectivity for VEGFR2 and IR along with improvement in metabolic stability. From docking studies of ALK versus VEGFR2 kinase, we postulated that the loss of entropy of the VEGFR2 in the bound form with 5a might be the origin of the reduced activity against that protein. Modification of the heterocyclic segment showed that thiazole-bearing pyrazolones preserved enzyme potency, and enhanced inhibition of NPM-ALK autophosphorylation in ALK-positive ALCL cells (Karpas-299). SAR of the benzyloxy group resulted in compounds which demonstrated good cellular potency in Karpas-299 cells. Compound 8 showed best overall profile for the series with broad kinome selectivity and liver micorsome stability. Compound 8 showed reasonable iv PK in rat, but with little oral exposure.


Subject(s)
Protein Kinase Inhibitors/chemistry , Pyrazolones/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Anaplastic Lymphoma Kinase , Animals , Binding Sites , Cell Line, Tumor , Computer Simulation , Enzyme Activation/drug effects , Indoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Pyrazolones/chemical synthesis , Pyrazolones/pharmacokinetics , Pyrazolones/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Bioorg Med Chem Lett ; 21(1): 164-7, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21123062

ABSTRACT

The HGF-c-Met signaling axis is an important paracrine mediator of epithelial-mesenchymal cell interactions involving the regulation of multiple cellular activities including cell motility, mitogenesis, morphogenesis, and angiogenesis. Dysregulation of c-Met signaling (e.g., overexpression or increased activation) is associated with the development of a wide range of tumor types; thus, inhibiting the HGF-c-Met pathway is predicted to lead to anti-tumor effects in many cancers. Elaboration of a 2-arylaminopyrimidine scaffold led to a series of potent c-Met inhibitors bearing a C4-2-amino-N-methylbenzamide group. Specifically, a series of C2-benzazepinone analogs demonstrated potent inhibition of c-Met in enzymatic and cellular assays. Kinase selectivity could be tuned by varying the nature of the alkyl group on the benzazepinone nitrogen.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrimidines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL