Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
J Alzheimers Dis ; 93(3): 1041-1050, 2023.
Article En | MEDLINE | ID: mdl-37154177

BACKGROUND: Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE: To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS: We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS: Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION: These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.


Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Leukocytes, Mononuclear , Cognitive Dysfunction/psychology , Stem Cells , Alzheimer Disease/psychology , Cognition/physiology , Neuropsychological Tests
2.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Article En | MEDLINE | ID: mdl-36440953

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Ischemic Stroke , Stroke , Female , Humans , Male , Middle Aged , Bayes Theorem , Brain , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , Models, Neurological
3.
Front Neurosci ; 16: 994458, 2022.
Article En | MEDLINE | ID: mdl-36090258

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

4.
Psychosom Med ; 84(8): 904-913, 2022 10 01.
Article En | MEDLINE | ID: mdl-35980777

OBJECTIVE: Despite considerable research documenting how stress affects brain and neurobehavioral outcomes, few studies have assessed stressor exposure occurring over the entire life span, and no studies have investigated these associations in people living with HIV (PLWH), despite the high stress and disease burden experienced by this population. To address this issue, we examined how cumulative lifetime chronic stressor exposure related to cognition and brain integrity (i.e., gray matter volume) in White and African American PLWH and HIV-uninfected (HIV-) adults. METHOD: Participants were 91 community-dwelling adults (47.3% PLWH) who completed a comprehensive interview assessing lifetime stressor exposure using the Stress and Adversity Inventory and underwent neuropsychological testing and structural magnetic resonance imaging. Regional brain volumes were derived from T1-weighted images processed through Freesurfer. RESULTS: As hypothesized, greater lifetime chronic stressor exposure was related to worse global cognition ( b = -0.06, standard error [SE] = 0.03, p = .032), processing speed ( b = -0.04, SE = 0.14, p = .041), and executive functioning ( b = -0.06, SE = 0.02, p = .02), and smaller prefrontal cortex (PFC) volume ( b = -16.20, SE = 5.78, p = .007). HIV status did not moderate any of these associations. Moreover, results from mediation analyses demonstrated that the relationship between lifetime chronic stressor exposure and processing speed was fully mediated by PFC volume. CONCLUSIONS: These results highlight the critical role of the PFC in the maintenance of processing speed abilities and its vulnerability to cumulative stressor exposure. Specifically, the negative impact of lifetime chronic stressor exposure on cognition-particularly functions reliant on frontal lobe integrity-may be partly driven by smaller volumes in the PFC.


HIV Infections , Prefrontal Cortex , Adult , Brain , Cognition , Executive Function , Gray Matter/diagnostic imaging , Gray Matter/pathology , HIV Infections/complications , Humans , Magnetic Resonance Imaging/methods , Neuropsychological Tests , Prefrontal Cortex/diagnostic imaging
5.
Neurology ; 99(13): e1364-e1379, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-35803717

BACKGROUND AND OBJECTIVES: To examine whether high white matter hyperintensity (WMH) burden is associated with greater stroke severity and worse functional outcomes in lesion pattern-specific ways. METHODS: MR neuroimaging and NIH Stroke Scale data at index stroke and the modified Rankin Scale (mRS) score at 3-6 months after stroke were obtained from the MRI-Genetics Interface Exploration study of patients with acute ischemic stroke (AIS). Individual WMH volume was automatically derived from fluid-attenuated inversion recovery images. Stroke lesions were automatically segmented from diffusion-weighted imaging (DWI) images, parcellated into atlas-defined brain regions and further condensed to 10 lesion patterns via machine learning-based dimensionality reduction. Stroke lesion effects on AIS severity and unfavorable outcomes (mRS score >2) were modeled within purpose-built Bayesian linear and logistic regression frameworks. Interaction effects between stroke lesions and a high vs low WMH burden were integrated via hierarchical model structures. Models were adjusted for age, age2, sex, total DWI lesion and WMH volumes, and comorbidities. Data were split into derivation and validation cohorts. RESULTS: A total of 928 patients with AIS contributed to acute stroke severity analyses (age: 64.8 [14.5] years, 40% women) and 698 patients to long-term functional outcome analyses (age: 65.9 [14.7] years, 41% women). Stroke severity was mainly explained by lesions focused on bilateral subcortical and left hemispherically pronounced cortical regions across patients with both a high and low WMH burden. Lesions centered on left-hemispheric insular, opercular, and inferior frontal regions and lesions affecting right-hemispheric temporoparietal regions had more pronounced effects on stroke severity in case of high compared with low WMH burden. Unfavorable outcomes were predominantly explained by lesions in bilateral subcortical regions. In difference to the lesion location-specific WMH effects on stroke severity, higher WMH burden increased the odds of unfavorable outcomes independent of lesion location. DISCUSSION: Higher WMH burden may be associated with an increased stroke severity in case of stroke lesions involving left-hemispheric insular, opercular, and inferior frontal regions (potentially linked to language functions) and right-hemispheric temporoparietal regions (potentially linked to attention). Our findings suggest that patients with specific constellations of WMH burden and lesion locations may have greater benefits from acute recanalization treatments. Future clinical studies are warranted to systematically assess this assumption and guide more tailored treatment decisions.


Brain Ischemia , Ischemic Stroke , Leukoaraiosis , Stroke , White Matter , Aged , Bayes Theorem , Female , Humans , Leukoaraiosis/pathology , Magnetic Resonance Imaging/methods , Male , Middle Aged , White Matter/pathology
6.
Brain Commun ; 4(2): fcac020, 2022.
Article En | MEDLINE | ID: mdl-35282166

Stroke represents a considerable burden of disease for both men and women. However, a growing body of literature suggests clinically relevant sex differences in the underlying causes, presentations and outcomes of acute ischaemic stroke. In a recent study, we reported sex divergences in lesion topographies: specific to women, acute stroke severity was linked to lesions in the left-hemispheric posterior circulation. We here determined whether these sex-specific brain manifestations also affect long-term outcomes. We relied on 822 acute ischaemic patients [age: 64.7 (15.0) years, 39% women] originating from the multi-centre MRI-GENIE study to model unfavourable outcomes (modified Rankin Scale >2) based on acute neuroimaging data in a Bayesian hierarchical framework. Lesions encompassing bilateral subcortical nuclei and left-lateralized regions in proximity to the insula explained outcomes across men and women (area under the curve = 0.81). A pattern of left-hemispheric posterior circulation brain regions, combining left hippocampus, precuneus, fusiform and lingual gyrus, occipital pole and latero-occipital cortex, showed a substantially higher relevance in explaining functional outcomes in women compared to men [mean difference of Bayesian posterior distributions (men - women) = -0.295 (90% highest posterior density interval = -0.556 to -0.068)]. Once validated in prospective studies, our findings may motivate a sex-specific approach to clinical stroke management and hold the promise of enhancing outcomes on a population level.

7.
Front Neurol ; 12: 700616, 2021.
Article En | MEDLINE | ID: mdl-34566844

Objective: To personalize the prognostication of post-stroke outcome using MRI-detected cerebrovascular pathology, we sought to investigate the association between the excessive white matter hyperintensity (WMH) burden unaccounted for by the traditional stroke risk profile of individual patients and their long-term functional outcomes after a stroke. Methods: We included 890 patients who survived after an acute ischemic stroke from the MRI-Genetics Interface Exploration (MRI-GENIE) study, for whom data on vascular risk factors (VRFs), including age, sex, atrial fibrillation, diabetes mellitus, hypertension, coronary artery disease, smoking, prior stroke history, as well as acute stroke severity, 3- to-6-month modified Rankin Scale score (mRS), WMH, and brain volumes, were available. We defined the unaccounted WMH (uWMH) burden via modeling of expected WMH burden based on the VRF profile of each individual patient. The association of uWMH and mRS score was analyzed by linear regression analysis. The odds ratios of patients who achieved full functional independence (mRS < 2) in between trichotomized uWMH burden groups were calculated by pair-wise comparisons. Results: The expected WMH volume was estimated with respect to known VRFs. The uWMH burden was associated with a long-term functional outcome (ß = 0.104, p < 0.01). Excessive uWMH burden significantly reduced the odds of achieving full functional independence after a stroke compared to the low and average uWMH burden [OR = 0.4, 95% CI: (0.25, 0.63), p < 0.01 and OR = 0.61, 95% CI: (0.42, 0.87), p < 0.01, respectively]. Conclusion: The excessive amount of uWMH burden unaccounted for by the traditional VRF profile was associated with worse post-stroke functional outcomes. Further studies are needed to evaluate a lifetime brain injury reflected in WMH unrelated to the VRF profile of a patient as an important factor for stroke recovery and a plausible indicator of brain health.

8.
Nat Commun ; 12(1): 3289, 2021 06 02.
Article En | MEDLINE | ID: mdl-34078897

Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


Brain Stem/pathology , Ischemic Stroke/pathology , Sensorimotor Cortex/pathology , Thalamus/pathology , Aged , Aged, 80 and over , Bayes Theorem , Brain Mapping , Brain Stem/blood supply , Brain Stem/diagnostic imaging , Cerebral Revascularization/methods , Cohort Studies , Female , Humans , Image Processing, Computer-Assisted , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/therapy , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , Sensorimotor Cortex/blood supply , Sensorimotor Cortex/diagnostic imaging , Severity of Illness Index , Sex Factors , Thalamus/blood supply , Thalamus/diagnostic imaging , Treatment Outcome
9.
J Int Neuropsychol Soc ; 27(4): 365-381, 2021 04.
Article En | MEDLINE | ID: mdl-33161930

OBJECTIVES: Mounting evidence indicates that vascular risk factors (VRFs) are elevated in HIV and play a significant role in the development and persistence of HIV-associated neurocognitive disorder. Given the increased longevity of people living with HIV (PLWH), there is a great need to better elucidate vascular contributions to neurocognitive impairment in HIV. This systematic review and meta-analysis examine relationships between traditional VRFs, cardiovascular disease (CVD), and cognition in PLWH in the combination antiretroviral therapy era. METHODS: For the systematic review, 44 studies met inclusion criteria and included data from 14,376 PLWH and 6,043 HIV-seronegative controls. To better quantify the contribution of VRFs to cognitive impairment in HIV, a robust variance estimation meta-analysis (N = 11 studies) was performed and included data from 2139 PLWH. RESULTS: In the systematic review, cross-sectional and longitudinal studies supported relationships between VRFs, cognitive dysfunction, and decline, particularly in the domains of attention/processing speed, executive functioning, and fine motor skills. The meta-analysis demonstrated VRFs were associated with increased odds of global neurocognitive impairment (odds ratio [OR ]= 2.059, p = .010), which remained significant after adjustment for clinical HIV variables (p = .017). Analyses of individual VRFs demonstrated type 2 diabetes (p = .004), hyperlipidemia (p = .043), current smoking (p = .037), and previous CVD (p = .0005) were significantly associated with global neurocognitive impairment. CONCLUSIONS: VRFs and CVD are associated with worse cognitive performance and decline, and neurocognitive impairment in PLWH. Future studies are needed to examine these relationships in older adults with HIV, and investigate how race/ethnicity, gender, medical comorbidities, and psychosocial factors contribute to VRF-associated cognitive dysfunction in HIV.


Diabetes Mellitus, Type 2 , HIV Infections , Aged , Cognition , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/drug therapy , Humans , Risk Factors
10.
Front Neurol ; 11: 577, 2020.
Article En | MEDLINE | ID: mdl-32670186

Background: Magnetic resonance imaging (MRI) serves as a cornerstone in defining stroke phenotype and etiological subtype through examination of ischemic stroke lesion appearance and is therefore an essential tool in linking genetic traits and stroke. Building on baseline MRI examinations from the centralized and structured radiological assessments of ischemic stroke patients in the Stroke Genetics Network, the results of the MRI-Genetics Interface Exploration (MRI-GENIE) study are described in this work. Methods: The MRI-GENIE study included patients with symptoms caused by ischemic stroke (N = 3,301) from 12 international centers. We established and used a structured reporting protocol for all assessments. Two neuroradiologists, using a blinded evaluation protocol, independently reviewed the baseline diffusion-weighted images (DWIs) and magnetic resonance angiography images to determine acute lesion and vascular occlusion characteristics. Results: In this systematic multicenter radiological analysis of clinical MRI from 3,301 acute ischemic stroke patients according to a structured prespecified protocol, we identified that anterior circulation infarcts were most prevalent (67.4%), that infarcts in the middle cerebral artery (MCA) territory were the most common, and that the majority of large artery occlusions 0 to 48 h from ictus were in the MCA territory. Multiple acute lesions in one or several vascular territories were common (11%). Of 2,238 patients with unilateral DWI lesions, 52.6% had left-sided infarct lateralization (P = 0.013 for χ2 test). Conclusions: This large-scale analysis of a multicenter MRI-based cohort of AIS patients presents a unique imaging framework facilitating the relationship between imaging and genetics for advancing the knowledge of genetic traits linked to ischemic stroke.

11.
Neurology ; 95(1): e79-e88, 2020 07 07.
Article En | MEDLINE | ID: mdl-32493718

OBJECTIVE: To examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS). METHODS: For the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes. RESULTS: Patients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001). CONCLUSION: In this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.


Stroke/etiology , Stroke/pathology , White Matter/pathology , Aged , Aged, 80 and over , Arterial Occlusive Diseases/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , Brain Ischemia/pathology , Deep Learning , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Risk Factors , Stroke/diagnostic imaging , White Matter/diagnostic imaging
12.
Mayo Clin Proc ; 95(5): 955-965, 2020 05.
Article En | MEDLINE | ID: mdl-32370856

OBJECTIVE: To determine whether brain volume is associated with functional outcome after acute ischemic stroke (AIS). PATIENTS AND METHODS: This study was conducted between July 1, 2014, and March 16, 2019. We analyzed cross-sectional data of the multisite, international hospital-based MRI-Genetics Interface Exploration study with clinical brain magnetic resonance imaging obtained on admission for index stroke and functional outcome assessment. Poststroke outcome was determined using the modified Rankin Scale score (0-6; 0 = asymptomatic; 6 = death) recorded between 60 and 190 days after stroke. Demographic characteristics and other clinical variables including acute stroke severity (measured as National Institutes of Health Stroke Scale score), vascular risk factors, and etiologic stroke subtypes (Causative Classification of Stroke system) were recorded during index admission. RESULTS: Utilizing the data from 912 patients with AIS (mean ± SD age, 65.3±14.5 years; male, 532 [58.3%]; history of smoking, 519 [56.9%]; hypertension, 595 [65.2%]) in a generalized linear model, brain volume (per 155.1 cm3) was associated with age (ß -0.3 [per 14.4 years]), male sex (ß 1.0), and prior stroke (ß -0.2). In the multivariable outcome model, brain volume was an independent predictor of modified Rankin Scale score (ß -0.233), with reduced odds of worse long-term functional outcomes (odds ratio, 0.8; 95% CI, 0.7-0.9) in those with larger brain volumes. CONCLUSION: Larger brain volume quantified on clinical magnetic resonance imaging of patients with AIS at the time of stroke purports a protective mechanism. The role of brain volume as a prognostic, protective biomarker has the potential to forge new areas of research and advance current knowledge of the mechanisms of poststroke recovery.


Brain Ischemia/physiopathology , Brain/anatomy & histology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Stroke/physiopathology , Aged , Brain Ischemia/complications , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Organ Size , Recovery of Function , Stroke/etiology
13.
Stroke ; 50(7): 1734-1741, 2019 07.
Article En | MEDLINE | ID: mdl-31177973

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.


Brain Ischemia/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Adult , Aged , Aged, 80 and over , Algorithms , Big Data , Brain Ischemia/epidemiology , Female , Humans , Image Processing, Computer-Assisted , Machine Learning , Male , Middle Aged , Neural Networks, Computer , Observer Variation , Phenotype , Retrospective Studies , Risk Factors , Socioeconomic Factors , Stroke/epidemiology
14.
Neuroimage Clin ; 23: 101884, 2019.
Article En | MEDLINE | ID: mdl-31200151

White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of -2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.


Brain Ischemia/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Stroke/diagnostic imaging , White Matter/diagnostic imaging , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged
15.
Diabetes Care ; 42(5): 972-979, 2019 05.
Article En | MEDLINE | ID: mdl-30833374

OBJECTIVE: To investigate relationships among type 2 diabetes treatment, Alzheimer's disease(AD) biomarkers, and risk for dementia. RESEARCH DESIGN AND METHODS: Participants were from the Alzheimer's Disease Neuroimaging Initiative (N = 1,289) and were dementia-free at baseline and underwent health assessment, cognitive testing, and MRI. A subset (n = 900) obtained a lumbar puncture to determine cerebrospinal fluid (CSF) phosphorylated tau (p-tau), total tau (t-tau), and ß-amyloid 1-42 (Aß1-42). Participants were grouped by fasting blood glucose and medication history: euglycemia (EU), prediabetes (PD), untreated diabetes (UD), and treated diabetes (TD). Relationships were investigated between treatment status and CSF biomarkers and risk for dementia. RESULTS: The UD group displayed greater p-tau, t-tau, and p-tau/Aß1-42 levels than the EU, PD, and TD groups (P values <0.05) and higher t-tau/Aß1-42 than the EU and PD groups (P values <0.05). The UD group progressed to dementia at higher rates than the EU group (hazard ratio 1.602 [95% CI 1.057-2.429]; P = 0.026). CONCLUSIONS: Treatment status may alter the relationship between type 2 diabetes and both AD biomarker profile and risk for dementia. UD is associated with elevated tau pathology and risk for dementia, whereas TD is not. Although this study is observational and therefore causality cannot be inferred, findings support the potential importance of treatment status in AD risk associated with type 2 diabetes.


Alzheimer Disease/epidemiology , Alzheimer Disease/therapy , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/therapy , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/blood , Biomarkers/analysis , Biomarkers/blood , Cognition/physiology , Diabetes Mellitus, Type 2/complications , Disease Progression , Female , Health Status , Humans , Male , Middle Aged , Survival Analysis , tau Proteins/analysis , tau Proteins/blood
16.
J Alzheimers Dis ; 61(1): 91-101, 2018.
Article En | MEDLINE | ID: mdl-29103037

BACKGROUND: Bone marrow-derived progenitor cells survey the vasculature and home to sites of tissue injury where they can promote repair and regeneration. It has been hypothesized that these cells may play a protective role neurodegenerative and vascular cognitive impairment. OBJECTIVE: To evaluate progenitor cell levels in older adults with and without mild cognitive impairment (MCI), and to relate circulating levels to memory, brain volume, white matter lesion volume, and cerebral perfusion. METHOD: Thirty-two older adults, free of stroke and cardiovascular disease, were recruited from the community and evaluated for diagnosis of MCI versus cognitively normal (CN). Participants underwent brain MRI and blood samples were taken to quantify progenitor reserve using flow cytometry (CD34+, CD34+CD133+, and CD34+CD133+CD309+ cells). RESULTS: Participants with MCI (n = 10) exhibited depletion of all CPC markers relative to those who were CN (n = 22), after controlling for age, sex, and education. Post-hoc age, sex, and education matched comparisons (n = 10 MCI, n = 10 CN) also revealed the same pattern of results. Depletion of CD34+ cells correlated with memory performance, left posterior cortical thickness, and bilateral hippocampal perfusion. Participants exhibited low levels of vascular risk and white matter lesion burden that did not correlate with progenitor levels. CONCLUSIONS: Circulating progenitor cells are associated with cognitive impairment, memory, cortical atrophy, and hippocampal perfusion. We hypothesize that progenitor depletion contributes to, or is triggered by, cognitive decline and cortical atrophy. Further study of progenitor cell depletion in older adults may benefit efforts to prevent or delay dementia.


Cerebral Cortex/pathology , Cognitive Dysfunction/pathology , Hippocampus/pathology , Stem Cells/pathology , Aged , Aged, 80 and over , Antigens, CD/metabolism , Apolipoproteins E/genetics , Cerebral Cortex/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Female , Flow Cytometry , Hippocampus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Perfusion , White Matter/diagnostic imaging
17.
Neurol Genet ; 3(5): e180, 2017 Oct.
Article En | MEDLINE | ID: mdl-28852707

OBJECTIVE: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. METHODS: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. CONCLUSIONS: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.

18.
Neurosci Lett ; 636: 225-232, 2017 01 01.
Article En | MEDLINE | ID: mdl-27717834

Metabolic syndrome (MetS) is a cluster of cardiovascular and metabolic abnormalities that together may increase the risk of developing cognitive decline and dementia; however, the neural substrate is incompletely understood. We investigated cortical thickness in the medial temporal lobe (MTL), hippocampal volume, as well as relationships among metabolic risk factor burden, structure and memory performance. Path-analytic models were tested to explore the relations between MetS risk factor, structure and memory performance. Participants were 65 non-demented, middle-aged and older adults, 34 with and 31 without metabolic syndrome. We analyzed archival T1-weighted magnetic resonance imaging (MRI) acquired at 3T and Total Recall and Delayed Recall scores from the Brief Visuospatial Memory Test Revised (BVMT-R). Middle-aged adults with MetS showed less MTL thickness, particularly in entorhinal cortex; while older adults showed a trend for left hippocampal volume loss. Lower MTL thickness, particularly in entorhinal cortex, was associated with greater metabolic risk factor burden in middle-aged adults. In older adults, hippocampal volume was associated with Total Recall and Delayed Recall, while in middle-age entorhinal cortical thickness mediated the association between metabolic disease burden and episodic memory function. The differential findings in middle-aged and older adults with MetS contribute to an understanding of the relationships between metabolic syndrome, structural changes in the brain and increased risk for cognitive decline.


Aging/physiology , Hippocampus/pathology , Metabolic Syndrome/pathology , Temporal Lobe/pathology , Adult , Alzheimer Disease/pathology , Cognition Disorders/etiology , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Mental Recall/physiology , Metabolic Syndrome/complications , Middle Aged , Risk Factors , Temporal Lobe/metabolism
...