Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
bioRxiv ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38826457

Protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.

2.
J Med Chem ; 64(15): 11148-11168, 2021 08 12.
Article En | MEDLINE | ID: mdl-34342224

PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.


Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Drug Discovery , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyridazines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein-Arginine N-Methyltransferases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
3.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Article En | MEDLINE | ID: mdl-34358446

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/physiology , Animals , Cell Line, Tumor , Cytoplasm/metabolism , Female , HCT116 Cells , HEK293 Cells , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ion Channels/metabolism , Male , Methylation , Mice , Mice, Nude , Nuclear Proteins/metabolism , Peptides/genetics , Protein Binding , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Spliceosomes/metabolism
4.
ACS Infect Dis ; 2(7): 456-64, 2016 07 08.
Article En | MEDLINE | ID: mdl-27626097

Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (ß-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.


3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Haemophilus Infections/microbiology , Haemophilus influenzae/chemistry , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Humans , Microbial Sensitivity Tests , Mutation
5.
ACS Med Chem Lett ; 6(8): 930-5, 2015 Aug 13.
Article En | MEDLINE | ID: mdl-26288696

Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class.

6.
Bioorg Med Chem Lett ; 25(16): 3301-6, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26099541

With increasing emergence of multi-drug resistant infections, there is a dire need for new classes of compounds that act through unique mechanisms. In this work, we describe the discovery and optimization of a novel series of inhibitors of bacterial methionine aminopeptidase (MAP). Through a high-throughput screening campaign, one azepinone amide hit was found that resembled the native peptide substrate and possessed moderate biochemical potency against three bacterial isozymes. X-ray crystallography was used in combination with substrate-based design to direct the rational optimization of analogs with sub-micromolar potency. The novel compounds presented here represent potent broad-spectrum biochemical inhibitors of bacterial MAP and have the potential to lead to the development of new medicines to combat serious multi-drug resistant infections.


Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Methionyl Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azepines/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Humans , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
7.
J Med Chem ; 58(7): 3156-71, 2015 Apr 09.
Article En | MEDLINE | ID: mdl-25798859

Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e., <1% to 4-6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improvement was at least 20- to 60-fold. Cocrystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of the clamp domain and/or with binding of template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets, and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective cocrystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.


DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Binding Sites , Blood Proteins/metabolism , Chemistry Techniques, Synthetic , Crystallography, X-Ray , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Haemophilus influenzae/drug effects , High-Throughput Screening Assays , Humans , Lactones/chemistry , Lactones/metabolism , Lactones/pharmacology , Models, Molecular , Protein Conformation , Structure-Activity Relationship
8.
ACS Infect Dis ; 1(5): 222-30, 2015 May 08.
Article En | MEDLINE | ID: mdl-27622650

Negamycin is a hydrophilic antimicrobial translation inhibitor that crosses the lipophilic inner membrane of Escherichia coli via at least two transport routes to reach its intracellular target. In a minimal salts medium, negamycin's peptidic nature allows illicit entry via a high-affinity route by hijacking the Dpp dipeptide transporter. Transport via a second, low-affinity route is energetically driven by the membrane potential, seemingly without the direct involvement of a transport protein. In mouse thigh models of E. coli infection, no evidence for Dpp-mediated transport of negamycin was found. The implication is that for the design of new negamycin-based analogs, the physicochemical properties required for cell entry via the low-affinity route need to be retained to achieve clinical success in the treatment of infectious diseases. Furthermore, clinical resistance to such analogs due to mutations affecting their ribosomal target or transport is expected to be rare and similar to that of aminoglycosides.

9.
ACS Infect Dis ; 1(7): 310-6, 2015 Jul 10.
Article En | MEDLINE | ID: mdl-27622821

Bacterially expressed ß-lactamases are rapidly eroding the clinical utility of the important ß-lactam class of antibacterials, significantly impairing our ability to fight serious bacterial infections. This paper describes a study of oxaborole-derived ß-lactamase inhibitors in which crystal structures and computational modeling aided in the rational design of analogues with improved spectrum of activity against class A, C, and D enzymes. Crystal structures of two of these inhibitors covalently bound to two different serine ß-lactamases, class C Pseudomonas aeruginosa AmpC and class D OXA-10, are described herein. Improved physicochemical properties as well as increased activity against an array of ß-lactamases resulted in substantial restoration of susceptibility to ceftazidime in Escherichia coli and Klebsiella pneumoniae.

10.
ACS Chem Biol ; 9(10): 2274-82, 2014 Oct 17.
Article En | MEDLINE | ID: mdl-25035921

The bacterial peptidoglycan biosynthesis pathway provides multiple targets for antibacterials, as proven by the clinical success of ß-lactam and glycopeptide classes of antibiotics. The Mur ligases play an essential role in the biosynthesis of the peptidoglycan building block, N-acetyl-muramic acid-pentapeptide. MurC, the first of four Mur ligases, ligates l-alanine to UDP-N-acetylmuramic acid, initiating the synthesis of pentapeptide precursor. Therefore, inhibiting the MurC enzyme should result in bacterial cell death. Herein, we report a novel class of pyrazolopyrimidines with subnanomolar potency against both Escherichia coli and Pseudomonas aeruginosa MurC enzymes, which demonstrates a concomitant bactericidal activity against efflux-deficient strains. Radio-labeled precursor incorporation showed these compounds selectively inhibited peptidoglycan biosynthesis, and genetic studies confirmed the target of pyrazolopyrimidines to be MurC. In the presence of permeability enhancers such as colistin, pyrazolopyrimidines exhibited low micromolar MIC against the wild-type bacteria, thereby, indicating permeability and efflux as major challenges for this chemical series. Our studies provide biochemical and genetic evidence to support the essentiality of MurC and serve to validate the attractiveness of target for antibacterial discovery.


Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Peptide Synthases/antagonists & inhibitors , Pseudomonas aeruginosa/enzymology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Alanine/metabolism , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Models, Chemical , Molecular Structure , Peptide Synthases/metabolism , Protein Kinases/chemistry , Pseudomonas aeruginosa/drug effects , Structure-Activity Relationship , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
11.
J Biol Chem ; 289(31): 21651-62, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-24936059

The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.


Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/enzymology , Phenylalanine-tRNA Ligase/metabolism , Binding Sites , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Microbial Sensitivity Tests , Models, Molecular , Phenylalanine-tRNA Ligase/chemistry , Sulfonamides/pharmacology
12.
J Med Chem ; 56(18): 7278-88, 2013 Sep 26.
Article En | MEDLINE | ID: mdl-23981144

The tRNA-(N(1)G37) methyltransferase (TrmD) is essential for growth and highly conserved in both Gram-positive and Gram-negative bacterial pathogens. Additionally, TrmD is very distinct from its human orthologue TRM5 and thus is a suitable target for the design of novel antibacterials. Screening of a collection of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused thieno-pyrimidones that were competitive with S-adenosylmethionine (SAM), the physiological methyl donor substrate. Guided by X-ray cocrystal structures, fragment 1 was elaborated into a nanomolar inhibitor of a broad range of Gram-negative TrmD isozymes. These compounds demonstrated no activity against representative human SAM utilizing enzymes, PRMT1 and SET7/9. This is the first report of selective, nanomolar inhibitors of TrmD with demonstrated ability to order the TrmD lid in the absence of tRNA.


Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/enzymology , tRNA Methyltransferases/antagonists & inhibitors , Adenosine/metabolism , Amines/chemical synthesis , Amines/chemistry , Amines/metabolism , Amines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Haemophilus influenzae/drug effects , Humans , Methionine/metabolism , Microbial Sensitivity Tests , Models, Molecular , Protein Structure, Tertiary , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Structure-Activity Relationship , Substrate Specificity , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/metabolism
13.
Anal Biochem ; 431(1): 48-53, 2012 Dec 01.
Article En | MEDLINE | ID: mdl-22975201

Enzyme assays for the catalytic activity of aminoacyl-tRNA synthetases generally measure the incorporation of radioactive amino acids into tRNA. Such assays are necessarily discontinuous. Leucyl-tRNA synthetase has recently gained attention as the target of novel antimicrobial compounds based on the oxaborole scaffold, examples of which have been shown to have slow binding and dissociation kinetics. Investigations of the kinetics of inhibition by these compounds would be facilitated by a continuous assay of leucyl-tRNA synthetase catalysis. Here we report a continuous fluorescence intensity-based assay for leucyl-tRNA synthetase in which the pyrophosphate product is converted to phosphate, which is detected with nanomolar sensitivity by a phosphate sensor protein. This assay was used to measure the time constants for the slow onset of inhibition and long residence time of an oxaborole-based inhibitor.


Boron Compounds/metabolism , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Escherichia coli/enzymology , Leucine-tRNA Ligase/antagonists & inhibitors , Spectrometry, Fluorescence , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Fluorescent Dyes/chemistry , Kinetics , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors
14.
J Bacteriol ; 194(20): 5504-12, 2012 Oct.
Article En | MEDLINE | ID: mdl-22843845

A series of inhibitors with a squaramide core was synthesized following its discovery in a high-throughput screen for novel inhibitors of a transcription-coupled translation assay using Escherichia coli S30 extracts. The inhibitors were inactive when the plasmid substrate was replaced with mRNA, suggesting they interfered with transcription. This was confirmed by their inhibition of purified E. coli RNA polymerase. The series had antimicrobial activity against efflux-negative strains of E. coli and Haemophilus influenzae. Like rifampin, the squaramides preferentially inhibited synthesis of RNA and protein over fatty acids, peptidoglycan, and DNA. However, squaramide-resistant mutants were not cross-resistant to rifampin. Nine different mutations were found in parts of rpoB or rpoC that together encode the so-called switch region of RNA polymerase. This is the binding site of the natural antibiotics myxopyronin, corallopyronin, and ripostatin and the drug fidaxomicin. Computational modeling using the X-ray crystal structure of the myxopyronin-bound RNA polymerase of Thermus thermophilus suggests a binding mode of these inhibitors that is consistent with the resistance mutations. The squaramides are the first reported non-natural-product-related, rapidly diversifiable antibacterial inhibitors acting via the switch region of RNA polymerase.


Anti-Bacterial Agents/metabolism , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Haemophilus influenzae/drug effects , Haemophilus influenzae/enzymology , Anti-Bacterial Agents/chemistry , DNA-Directed RNA Polymerases/genetics , Drug Evaluation, Preclinical/methods , Drug Resistance, Bacterial , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , High-Throughput Screening Assays/methods , Microbial Sensitivity Tests , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/genetics , Mutation , Protein Binding , Protein Conformation , Rifampin/metabolism
15.
J Org Chem ; 70(11): 4284-99, 2005 May 27.
Article En | MEDLINE | ID: mdl-15903302

For studies of RNA structure, folding, and catalysis, site-specific modifications are typically introduced by solid-phase synthesis of RNA oligonucleotides using nucleoside phosphoramidites. Here, we report the preparation of two complete series of RNA nucleoside phosphoramidites; each has an appropriately protected amine or thiol functional group. The first series includes each of the four common RNA nucleotides, U, C, A, and G, with a 2'-(2-aminoethoxy)-2'-deoxy substitution (i.e., a primary amino group tethered to the 2'-oxygen by a two-carbon linker). The second series encompasses the four common RNA nucleotides, each with the analogous 2'-(2-mercaptoethoxy)-2'-deoxy substitution (i.e., a tethered 2'-thiol). The amines are useful for acylation and reductive amination reactions, and the thiols participate in displacement and oxidative cross-linking reactions, among other likely applications. The new phosphoramidites will be particularly valuable for enabling site-specific introduction of biophysical probes and constraints into RNA.


Amides/chemical synthesis , Amines/chemistry , Oligonucleotides/chemical synthesis , Phosphoric Acids/chemical synthesis , RNA/chemistry , Sulfhydryl Compounds/chemistry , Combinatorial Chemistry Techniques , Molecular Structure , Phosphoramides , RNA/chemical synthesis
...