Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 52(10): 1413-1423, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33057941

ABSTRACT

Obesity is associated with altered glycine metabolism in humans. This study investigated the mechanisms regulating glycine metabolism in obese rats. Eight-week-old Zucker diabetic fatty rats (ZDF; a type-II diabetic animal model) received either 1% glycine or 1.19% L-alanine (isonitrogenous control) in drinking water for 6 weeks. An additional group of lean Zucker rats also received 1.19% L-alanine as a lean control. Glycine concentrations in serum and liver were markedly lower in obese versus lean rats. Enteral glycine supplementation restored both serum and hepatic glycine levels, while reducing mesenteric and internal white fat mass compared with alanine-treated ZDF rats. Blood glucose and non-esterified fatty acid (NEFA) concentrations did not differ between the control and glycine-supplemented ZDF rats (P > 0.10). Both mRNA and protein expression of aminomethyltransferase (AMT) and glycine dehydrogenase, decarboxylating (GLDC) were increased in the livers of obese versus lean rats (P < 0.05). In contrast, glycine cleavage system H (GCSH) hepatic mRNA expression was downregulated in obese versus lean rats, although there was no change in protein expression. These findings indicate that reduced quantities of glycine observed in obese subjects likely results from an upregulation of the hepatic glycine cleavage system and that dietary glycine supplementation potentially reduces obesity in ZDF rats.


Subject(s)
Adipose Tissue, White/drug effects , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Glycine/administration & dosage , Liver/drug effects , Obesity/drug therapy , Adipose Tissue, White/metabolism , Alanine/administration & dosage , Alanine/metabolism , Aminomethyltransferase/genetics , Aminomethyltransferase/metabolism , Animals , Appetite Regulation/drug effects , Body Weight/drug effects , Diabetes Mellitus, Type 2/metabolism , Glycine/metabolism , Glycine Decarboxylase Complex H-Protein/genetics , Glycine Decarboxylase Complex H-Protein/metabolism , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Liver/metabolism , Male , Obesity/metabolism , RNA, Messenger/metabolism , Rats , Rats, Zucker
2.
Placenta ; 96: 1-9, 2020 07.
Article in English | MEDLINE | ID: mdl-32421527

ABSTRACT

INTRODUCTION: Maternal nutrient partitioning, uteroplacental blood flow, transporter activity, and fetoplacental metabolism mediate nutrient delivery to the fetus. Inadequate availability or delivery of nutrients results in intrauterine growth restriction (IUGR), a leading cause of neonatal morbidity and mortality. Maternal nutrient restriction can result in IUGR, but only in an unforeseeable subset of individuals. METHODS: To elucidate potential mechanisms regulating fetal nutrient availability, singleton sheep pregnancies were generated by embryo transfer. Pregnant ewes received either a 50% NRC (NR; n = 24) or 100% NRC (n = 7) diet from gestational Day 35 until necropsy on Day 125. Maternal weight did not correlate with fetal weight; therefore, the six heaviest (NR Non-IUGR) and five lightest (NR IUGR) fetuses from nutrient-restricted ewes, and seven 100% NRC fetuses, were compared to investigate differences in nutrient availability. RESULTS: Insulin, multiple amino acids, and their metabolites, were reduced in fetal circulation of NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. In contrast, glucose in fetal fluids was not different between groups. There was a nearly two-fold reduction in placentome volume and fetal/maternal interface length in NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. Changes in amino acid concentrations were associated with altered expression of cationic (SLC7A2, SLC7A6, and SLC7A7) and large neutral (SLC38A2) amino acid transporters in placentomes. DISCUSSION: Results establish a novel approach to study placental adaptation to maternal undernutrition in sheep and support the hypothesis that amino acids and polyamines are critical mediators of placental and fetal growth in sheep.


Subject(s)
Adaptation, Physiological/physiology , Caloric Restriction , Fetal Growth Retardation/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Placenta/metabolism , Amino Acids/blood , Animal Nutritional Physiological Phenomena/physiology , Animals , Diet , Female , Fetal Development/physiology , Insulin/blood , Maternal-Fetal Exchange , Placental Circulation/physiology , Pregnancy , Sheep
3.
J Anim Sci ; 98(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32283549

ABSTRACT

Body temperature maintenance is one of the most important physiological processes initiated after birth. Brown adipose tissue (BAT) is an essential mediator of thermogenesis in many species and is responsible for 50% of the heat generated in the newborn lamb. To determine if maternal arginine supplementation could enhance thermogenesis in the neonate, we randomly assigned 31 multiparous Suffolk ewes, gestating singletons or twins, to receive intravenous injections of either l-arginine (27 mg/kg body weight; n = 17) or sterile saline (n = 14) three times daily from day 75 to 125 of gestation (term = 147). Following parturition, lambs were removed from their mothers and subjected to 0 °C cold challenges at 4 and 22 h of age. Rectal temperatures were higher for the duration of the cold challenges in lambs from arginine-treated ewes compared with lambs from saline-treated ewes (P < 0.05). Elevated rectal temperatures were associated with increased (P < 0.05) circulating glycine and serine concentrations in lambs. The mRNA expression of genes related to BAT function changed over time, but not between lambs from arginine-treated vs. saline-treated ewes. Results indicate that maternal arginine treatment increases neonatal thermogenesis after birth. Although the underlying mechanisms remain to be elucidated, these data are a first step in improving neonatal survival in response to cold.


Subject(s)
Arginine/administration & dosage , Dietary Supplements/analysis , Sheep/physiology , Thermogenesis/drug effects , Adipose Tissue, Brown/physiology , Administration, Intravenous/veterinary , Animals , Animals, Newborn , Body Temperature , Cold Temperature , Female , Glycine/blood , Parturition , Pregnancy , Serine/blood , Sheep/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...