Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Energy Fuels ; 38(8): 6753-6763, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38654763

The comprehensive chemical characterization of crude oil is important for the evaluation of the transformation and fate of components in the environment. Molecular-level speciation of naphthenic acid fraction compounds (NAFCs) was investigated in a mesoscale spill tank using both negative-ion electrospray ionization (ESI) Orbitrap mass spectrometry (MS) and positive-ion atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI-FT-ICR-MS). Both ionization techniques are coupled to high-resolution mass spectrometric detectors (ESI: Orbitrap MS; APPI: FT-ICR-MS at 9.4 T), enabling insight into the behavior and fate of petrogenic compounds during a simulated freshwater crude oil spill. Negative-ion ESI Orbitrap-MS reveals that oxygen-containing (Ox) classes are detected early in the spill, whereby species with more oxygen per molecule evolve later in the simulated spill. The O2-containing species gradually decreased in relative abundance, while O3 and O4 species increased in relative abundance throughout the simulated spill, which could correspond to a relative degree of oxygen incorporation. Nonpolar speciation by positive-ion APPI 9.4 T FT-ICR-MS allowed for the identification of water-soluble nonpolar and less polar acidic species. Molecular-level graphical representation of elemental compositions derived from simulated spill water-soluble and oil-soluble species suggest that biological activity is the primary degradation mechanism and that biodegradation was the dominant mechanism based on the negative-ion ESI Orbitrap-MS results.

2.
Chemosphere ; 358: 142076, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670506

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Carboxylic Acids , Oil and Gas Fields , Soil , Wetlands , Adsorption , Carboxylic Acids/chemistry , Soil/chemistry , Minerals/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Sand/chemistry
3.
Environ Pollut ; 333: 122061, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37330190

The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.


Petroleum , Water Pollutants, Chemical , Alberta , Oil and Gas Fields , Wetlands , Chromatography, Liquid , Tandem Mass Spectrometry , Petroleum/analysis , Carboxylic Acids/analysis , Water Pollutants, Chemical/analysis
4.
J Mol Graph Model ; 114: 108187, 2022 07.
Article En | MEDLINE | ID: mdl-35461067

Zwitterion-based mixed matrix membranes (MMMs) with designed characteristics of enhanced water flux, selectivity, and fouling mitigation have emerged as a new class of advanced membranes for oilsands process-affected wastewater (OSPW) treatment. Zwitterions (ZW) characterized by super-hydrophilicity and excellent fouling resistance have gained increasing attention in membrane modification research. In general, zwitterion properties are determined by the chemistry and structural properties of its constituents, including the polymer backbone, charged moieties, spacers, as well as molecular configuration. This study used molecular dynamics simulation (MDS) to investigate the effects of polymer backbone (PB), spacer length (SL), and spacer chemistry (SC) on ZW-based MMM properties such as stability, hydrophilicity, and oil-antifouling potentiality. Membrane performance was also assessed at high temperatures (50, 70, and 90 °C. The results suggest PB, SL, and SC all influence the resultant MMM performance, with SL being the most impactful structural parameter on stability and hydrophilicity. Variation of SL was suspected to alter the ionic association and partial charges of zwitterionic moieties, which affect their ability to interact with the polymer network and water molecules. Spacer chemistry (i.e., hydroxyl (-OH) groups) can initiate self-association between zwitterionic charged groups having short SL, lessening their inter-molecular networking ability. However, for ZWs with long SL, the presence of hydroxyl groups on the spacer can result in the formation of hydrogen bonds and/or electrostatic interactions with other ZW molecules and polyvinylidene difluoride (PVDF) polymer chains or water molecules, improving membrane stability and hydrophilicity. High temperatures reduced membrane stability but to a lesser extent for MMMs compared to unmodified PVDF membrane. While temperature greatly influenced membrane hydrophilicity, the impacts were membrane-specific. The oil-fouling propensity of pristine PVDF membrane increased with temperature but of MMMs appeared stable across the temperature range studied.


Membranes, Artificial , Water Purification , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Water
5.
Sci Total Environ ; 806(Pt 2): 150619, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34592289

Bitumen is extracted from oil sands in the Athabasca Oil Sands region (AOSR) of Alberta, Canada. Much of the bitumen-derived toxicity in mine waste is attributable to naphthenic acid fraction compounds (NAFCs). Mines in the AOSR are required to be returned to a natural state after closure; thus, cost-effective strategies are needed to reduce toxicity from NAFCs. Previous studies have demonstrated the capability of constructed wetlands to attenuate NAFCs. However, the capacity of wetlands in the natural environment to degrade and transform NAFCs to less toxic components is poorly understood. To better understand the spatial distribution and fate of NAFCs in natural wetlands, samples were collected across the surfaces of two mature opportunistic wetlands near active oil sands mines. The first wetland has a well-defined surface flow pathway and inflows affected by overburden containing lean bitumen ore. The second wetland, in contrast, is a stagnant water body with raw bitumen visible along its edges. For the wetland with a well defined flow path, NAFCs decreased in concentration down gradient, while oxidized NAFCs constituted a greater proportion of NAFCs with increase in flow path. Likewise there was a decrease in the molecular weights of NAFCs, similar to trends observed in constructed wetland treatment systems. In comparison, NAFCs were more uniformly distributed across the relatively stagnant wetland. Overall, these data provide new evidence that mature opportunistic wetlands in the AOSR can promote the degradation and oxidation of bitumen-derived naphthenic acids into less toxic compounds.


Water Pollutants, Chemical , Wetlands , Alberta , Carboxylic Acids , Hydrocarbons , Oil and Gas Fields , Water Pollutants, Chemical/analysis
6.
J Chromatogr A ; 1656: 462495, 2021 Oct 25.
Article En | MEDLINE | ID: mdl-34537663

The abundance and composition of matrix compounds in fire debris samples undergoing ignitable liquid residue analysis frequently leads to inconclusive results, which can be diminished by applying comprehensive two-dimensional gas chromatography (GC × GC). Method development must be undertaken to fully utilize the potential of GC × GC by maximizing separation space and resolution.. The three main areas to consider for method development are column selection, modulator settings and parameter optimization. Seven column combinations with different stationary phase chemistry, column dimensions and orthogonality were assessed for suitability based on target compound selectivity, retention, resolution, and peak shapes, as well as overall peak capacity and area use. Using Box-Behnken design of experimentation (DoE), the effect of modulator settings such as flow ratio and loop fill capacity were evaluated using carbon loading potential, dilution effect, as well as target peak amplitude and skewing effect. The run parameters explored for parameter optimization were oven programming, inlet pressure (column flow rate), and modulation period. Comparing DoE approaches, Box-Behnken and Doehlert designs assessed sensitivity, selectivity, peak capacity, and wraparound; alongside target peak retention, resolution, and shape evaluation. Certified reference standards and simulated wildfire debris were used for method development and verification, and wildfire debris case samples scrutinized for method validation. The final method employed a low polarity column (5% diphenyl) coupled to a semi-polar column (50% diphenyl) and resulted in an average Separation Number (SN) exceeding 1 in both dimensions after optimization. Separation Numbers of 18.16 for first and 1.46 for second dimension without wraparound for compounds with at least four aromatic rings signified successful separation of all target compounds from varied matrix compositions and allowed for easy visual comparison of extracted ion profiles. Mass spectrometry (MS) was required during validation to differentiate ions where no baseline separation between target compounds and extraneous matrix compounds was possible. The resulting method was evaluated against ASTM E1618 and found to be an ideal routine analysis method providing great resolution of target compounds from interferences and excellent potential for ILR classification within a complex sample matrix.


Gas Chromatography-Mass Spectrometry , Indicator Dilution Techniques , Mass Spectrometry
7.
Sci Total Environ ; 780: 146342, 2021 Aug 01.
Article En | MEDLINE | ID: mdl-33770601

Classical naphthenic acids (NAs) are known to be primary aquatic toxicants of concern in the Athabasca oil sands region (AOSR), and are a component of naphthenic acid fraction compounds (NAFCs). Recent studies conducted in the AOSR have examined metals and polycyclic aromatic hydrocarbons in regional wetlands. However, few studies have described NAs and/or NAFCs in AOSR wetlands. To address this gap, we examined NAFC profiles in the water of different wetlands in the AOSR, including naturalized borrow pits (i.e., abandoned pits created by excavation of road-building materials), and opportunistically-formed wetlands associated with reclamation activities. For comparison, NAFC profiles from these wetlands were compared to an opportunistic wetland formed from tailings pond dyke seepage. Samples were prepared using solid-phase extraction and analyzed using negative-ion high-resolution Orbitrap mass spectrometry. Principal component analyses (PCA) revealed patterns to the NAFC profiles in the wetlands. The first distinct grouping of wetlands included water bodies associated with reclamation activities that are located on and/or adjacent to mining overburden. One other wetland, HATS5w, separated from all other wetlands during PCA, and had a unique NAFC profile; detailed examination of NAFCs revealed HATS5w contained the heaviest (i.e., high m/z components) and most unsaturated NAFCs among study locations, demonstrating the usefulness of high-resolution mass spectrometry for characterizing individual wetlands. The NAFCs of HATS5w are also substantially different from bitumen-derived inputs in overburden-adjacent opportunistic wetlands. Collectively, the NAFC profiles presented provide new information on background levels of polar bitumen-derived organics in AOSR wetlands.

8.
Sci Total Environ ; 772: 145508, 2021 Jun 10.
Article En | MEDLINE | ID: mdl-33581517

Constructed wetland treatment systems (CWTS)s can be used to treat various wastewaters. The main constituent in oil sands process-affected water (OSPW) with uncertain treatment by CWTS are naphthenic acid fraction compounds (NAFC)s. The NAFCs are also among the primary contributors of toxicity to aquatic organisms. While there is preliminary evidence that some CWTSs are capable of treating OSPW for future potential discharge, there is little information comparing the effectiveness and efficiencies of different CWTS designs. Obtaining large volumes of OSPW for testing can be difficult, and while it is known that synthetic NAFCs are simpler and have different toxicity than OSPW-NAFCs, it is unknown whether they could serve as a proxy for optimization of CWTS design and operation. This study presents a comprehensive comparison of CWTS performance operated with both synthetic OSPW and OSPW for four CWTS designs differing in plant type, aeration, flow path, water depth, and substrate type. This study evaluated the potential biodegradation of NAFCs including: (1) decrease in total NAFC concentration, (2) shifts in Ox-NAFC fractions from O2- to O3-, O4-, and O5-NAFC, (3) decrease in carbon number, (4) decrease of the double bond equivalencies (DBE), and (5) change in toxicity of the waters to test organisms. CWTS planted with Sedge achieved the greatest extent of NAFC treatment and detoxification regardless of design. Although CWTSs planted with Cattail and Bulrush also degraded NAFCs and decreased toxicity, a greater hydraulic retention time was required, and the total extent of treatment was less than the CWTSs planted with Sedge. While synthetic OSPW was more toxic and experienced faster degradation rates, it showed similar trends to OSPW in terms of CWTS design efficiencies and function. Although synthetic OSPW would not be appropriate for modelling or scaling of CWTSs, it can be useful for testing designs and operating conditions.


Water Pollutants, Chemical , Wetlands , Biodegradation, Environmental , Carboxylic Acids , Oil and Gas Fields , Wastewater , Water Pollutants, Chemical/analysis
9.
J Chromatogr A ; 1635: 461717, 2021 Jan 04.
Article En | MEDLINE | ID: mdl-33254004

In this study, we introduce a simple three-step workflow for a universally applicable RI system, to be used in GC×GC analysis of ignitable liquid residue (ILR) for arson investigations. The proposed RI system applies a combination of two well-established GC RI systems: non-isothermal Kovats (K) index in the first dimension and Lee (L) index in the second dimension. The proposed KLI RI system showed very good correlations when compared with predicted values and existing RI systems (r2 = 0.97 in first dimension, r2 = 0.99 in second dimension) and was valid for a wide range of analyte concentrations and operational settings (coefficient of variance (CV) < 1% in first dimension, < 10% in second dimension). Using the KLI RI, an ILR classification contour map was created to assist with the identification of ILR types within ASTM E1618. The contour map was successfully applied to neat fuels and a fire scene sample, highlighting the application to wildfire investigation. Standardizing the RI process and establishing acceptable error margins allows the exploration and comparison of comprehensive data generated from GC×GC analysis of ILRs regardless of location, time, or system, further enhancing comprehensive and tenable chemometric analyses of samples. Overall, the KLI workflow was inexpensive, quick to apply, and user-friendly with its simple 3-step design.


Chemistry Techniques, Analytical/methods , Firesetting Behavior , Forensic Sciences/methods , Organic Chemicals/analysis , Wildfires , Chromatography, Gas/methods , Time
10.
Sci Total Environ ; 716: 137063, 2020 May 10.
Article En | MEDLINE | ID: mdl-32044488

The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis. We demonstrate the direct analysis of a synthetic oil sands process-affected water for classical naphthenic acids (CnH2n+zO2) as they are attenuated through constructed wetlands containing sedge (Carex aquatilis), cattail (Typha latifolia), or bulrush (Schoenoplectus acutus). Quantitative results for on-line membrane sampling compare favourably to those obtained by solid-phase extraction high-resolution mass spectrometry. Additionally, chemometric analysis of the mass spectra indicates a clear discrimination between naphthenic acid-influenced and natural background waters. Furthermore, the compositional changes within complex naphthenic acid mixtures track closely with the degree of attenuation. Overall, the technique is successful in following changes in both the concentration and composition of naphthenic acids from synthetic oil sands process-affected waters, with the potential for high throughput screening and environmental forensics.


Wetlands , Carboxylic Acids , Mass Spectrometry , Oil and Gas Fields , Water Pollutants, Chemical
11.
Environ Manage ; 62(6): 1038-1047, 2018 12.
Article En | MEDLINE | ID: mdl-30238360

Debate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought. The results of international research into how agricultural infrastructure features in current and planned adaptive capacity of rural communities in Argentina, Canada, and Colombia indicate that extreme hydroclimatic events, as well as climate variability and unpredictability are important for understanding and responding to community vulnerability. The research outcomes clearly identify the need to deliberately plan, coordinate, and implement infrastructures that support community resiliency.


Conservation of Water Resources , Droughts , Floods , Water Resources/supply & distribution , Agriculture , Animals , Argentina , Canada , Cattle , Climate Change , Colombia , Droughts/statistics & numerical data , Floods/statistics & numerical data , Forestry , Humans , Residence Characteristics/statistics & numerical data , Uncertainty
12.
Sci Total Environ ; 631-632: 829-839, 2018 Aug 01.
Article En | MEDLINE | ID: mdl-29727993

Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity.

13.
Environ Manage ; 61(1): 34-45, 2018 01.
Article En | MEDLINE | ID: mdl-29110060

Technology alone cannot address the challenges of how societies, communities, and individuals understand water accessibility, water management, and water consumption, particularly under extreme conditions like floods and droughts. At the community level, people are increasingly aware challenges related to responses to and impacts of extreme water events. This research begins with an assessment of social and political capacities of communities in two Commonwealth jurisdictions, Queensland, Australia and Saskatchewan, Canada, in response to major flooding events. The research further reviews how such capacities impact community engagement to address and mitigate risks associated with extreme water events and provides evidence of key gaps in skills, understanding, and agency for addressing impacts at the community level. Secondary data were collected using template analysis to elucidate challenges associated with education (formal and informal), social and political capacity, community ability to respond appropriately, and formal government responses to extreme water events in these two jurisdictions. The results indicate that enhanced community engagement alongside elements of an empowerment model can provide avenues for identifying and addressing community vulnerability to negative impacts of flood and drought.


Residence Characteristics , Water/analysis , Australia , Droughts , Floods , Humans , Queensland , Saskatchewan
14.
Rapid Commun Mass Spectrom ; 31(24): 2057-2065, 2017 Dec 30.
Article En | MEDLINE | ID: mdl-28944977

RATIONALE: The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. METHODS: Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. RESULTS: The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization reagent. CONCLUSIONS: Proof of concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization is demonstrated. Furthermore, (+)ESI-HRMS of the derivatized monocarboxylic NAFCS yields similar information to (-)ESI-MS analysis of underivatized NAFCs, with the benefit of added selectivity for carboxylic acid species and the characterization of diacids.

15.
Can J Microbiol ; 63(6): 546-558, 2017 Jun.
Article En | MEDLINE | ID: mdl-28264165

Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.


Bacteria/growth & development , Drinking Water/microbiology , Water Purification , Bacteroidetes , Cyanobacteria , Disinfection , Legionella , Proteobacteria/classification , RNA, Ribosomal, 16S , Water Purification/methods
16.
Water Res ; 104: 397-407, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27576158

Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production.


Ozone , Water Purification , Drinking Water , Filtration , Water Pollutants, Chemical , Water Quality
17.
Molecules ; 21(1): 93, 2016 Jan 14.
Article En | MEDLINE | ID: mdl-26784153

This commentary reports on a recent scientific study reported in this journal (cf. Molecules 2015, 20(3), 3565-3581). Some key scientific issues that require further explanation and clarification in the former article are as follows: (i) the relationship between the inclusion site accessibility and the level of cross-linking employed are brought into question for the case of α-CD and ß-CD cross-linked adsorbent materials; (ii) the binding affinity of the CD/guest complexes were not related to the isotherm parameters for the CD-polymer/guest systems; (iii) the limited molecular level structural characterization of the cross-linked polymer materials; and (iv) the interpretation of the adsorption isotherm results by the authors.


Cross-Linking Reagents/pharmacology , Cyclodextrins/chemistry , Polymers/chemistry , Starch/chemistry , Sulfones/chemistry
18.
J Environ Sci Health B ; 50(11): 819-26, 2015.
Article En | MEDLINE | ID: mdl-26357892

As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.


Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Lamiaceae/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Barbados , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Glycosides/analysis , Glycosides/chemistry , Isomerism , Phenols/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Rhamnose/chemistry
19.
Anal Chem ; 86(15): 7666-73, 2014 Aug 05.
Article En | MEDLINE | ID: mdl-25001115

During the bitumen extraction from the oil sands of Alberta, large volumes of process water containing naphthenic acids are stored in tailing ponds. The naphthenic acids along with other components in the processed waters are known to be toxic in aquatic environments. In view of the complex matrix and the toxicity of the processed waters, there is a need for complementary analytical techniques for comprehensive characterization of the naphthenic acid mixtures. This study reports the online gas chromatographic separation of naphthenic acid mixtures prior to ultrahigh resolution mass spectrometry detection, using electron and chemical ionization. Two oil sands processed water samples and two groundwater samples were characterized to evaluate the performance of the instrumental technique. The high mass resolution of the system enabled visualization of the data using Kendrick mass defect plots. The addition of gas chromatographic separations enabled visualization of the data as unique compound class elution fingerprints. The technique is demonstrated to be a valuable tool for chemical fingerprinting of naphthenic acids.

20.
Environ Sci Pollut Res Int ; 20(8): 5441-8, 2013 Aug.
Article En | MEDLINE | ID: mdl-23423870

The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs.


Disinfection/instrumentation , Escherichia coli/radiation effects , Ultraviolet Rays , Waste Disposal, Fluid/instrumentation , Water Pollutants/radiation effects , Bacterial Load , Disinfection/methods , Waste Disposal, Fluid/methods
...