Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Leukemia ; 38(3): 502-512, 2024 03.
Article in English | MEDLINE | ID: mdl-38114624

ABSTRACT

CFI-400945 is a selective oral polo-like kinase 4 (PLK4) inhibitor that regulates centriole duplication. PLK4 is aberrantly expressed in patients with acute myeloid leukemia (AML). Preclinical studies indicate that CFI-400945 has potent in vivo efficacy in hematological malignancies and xenograft models, with activity in cells harboring TP53 mutations. In this phase 1 study in very high-risk patients with relapsed/refractory AML and myelodysplastic syndrome (MDS) (NCT03187288), 13 patients were treated with CFI-400945 continuously in dose escalation from 64 mg/day to 128 mg/day. Three of the 9 efficacy evaluable AML patients achieved complete remission (CR). Two of 4 AML patients (50%) with TP53 mutations and complex monosomal karyotype achieved a CR with 1 patient proceeding to allogenic stem cell transplant. A third patient with TP53 mutated AML had a significant reduction in marrow blasts by > 50% with an improvement in neutrophil and platelet counts. Responses were observed after 1 cycle of therapy. Dose-limiting toxicity was enteritis/colitis. A monotherapy and combination therapy study with a newer crystal form of CFI-400945 in patients with AML, MDS and chronic myelomonocytic leukemia (CMML) is ongoing (NCT04730258).


Subject(s)
Indazoles , Indoles , Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Leukemia, Myelomonocytic, Chronic/drug therapy , Disease-Free Survival , Protein Serine-Threonine Kinases/genetics
4.
Curr Oncol ; 28(1): 128-137, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33704181

ABSTRACT

BACKGROUND: venous thromboembolism (VTE) is a well-known complication in adults with acute lymphoblastic leukemia (ALL), especially in patients treated with asparaginase (ASNase)-including regiments. However, VTE risk in adult Philadelphia-positive ALL (Ph+ve ALL) patients treated with non-hyperCVAD chemotherapy is unclear. In this study, we examined VTE incidence in adult Ph+ve ALL patients treated with imatinib plus a pediatric-inspired asparaginase (ASNase)-free regimen modified from the Dana Farber Cancer Institute (DFCI) ALL protocol. METHODS: a single centre retrospective review of Ph+ve ALL patients treated at Princess Margaret Cancer Center (PMCC) from 2008-2019 with imatinib plus modified DFCI protocol was conducted. RESULTS: of the 123 patients included, 30 (24.3%) had at least 1 radiology confirmed VTE event from diagnosis to the end of maintenance therapy. 86.7% (26/30) of the VTE events occurred during active treatment. Of all VTE events, the majority (53.3%) were DVT and/or PE while another significant portion were catheter-related (40.0%). Major bleeding was observed in 1 patient on VTE treatment with low molecular weight heparin (LMWH). CONCLUSION: a high VTE incidence (24.3%) was observed in adults Ph+ve ALL patients treated with imatinib plus an ASNase-free modified DFCI pediatric ALL protocol, suggesting prophylactic anticoagulation should be considered for all adult Ph+ve ALL patients including those treated with ASNase-free regimens.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Thrombosis , Adult , Anticoagulants , Asparaginase/adverse effects , Child , Heparin, Low-Molecular-Weight , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Retrospective Studies , Thrombosis/epidemiology , Thrombosis/etiology
6.
Blood Adv ; 2(20): 2658-2671, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30327374

ABSTRACT

There is a paucity of data regarding the impact of mutations on outcomes in accelerated-phase (AP) and blast-phase (BP) myeloproliferative neoplasms (MPNs). Moreover, it is unknown whether mutational status affects survival, as seen in chronic-phase MPNs. Therefore, we performed a retrospective analysis of all patients treated at our institution with AP/BP MPNs (N = 122; AP = 14; BP = 108) to comprehensively describe the mutational profile and correlate with clinical outcomes. Targeted sequencing with a 54-gene panel was performed. Forty-four patients were treated with intensive therapy, 27 with nonintensive therapy, and 51 with best supportive care (BSC). The most common mutation was JAK2V617F, occurring in 55% of subjects; CALR was found in 13% of patients and MPL in 6%. Thirty-two (26%) patients were triple negative. Other frequently mutated genes were ASXL1 (30%), TET2 (25%), SRSF2 (22%), RUNX1 (20%), and TP53 (17%). Mutations in 1, 2, 3, and ≥4 genes were seen in 15%, 13%, 25%, and 46% of patients, respectively. There was no difference in survival between patients treated with intensive vs nonintensive therapy, and the benefit of intensive therapy was limited to patients who were able to undergo transplantation. TP53 was the only individual mutation to correlate with shorter overall survival (hazard ratio, 1.89; P = .03). In the multivariate analysis, mutated TP53, ≥4 mutations, low albumin, increased peripheral blood blasts, ≥3 cytogenetic abnormalities, and BSC were associated with shorter survival. In conclusion, mutational data enhance the understanding of patients with AP/BP MPN who are likely to benefit from current therapeutic options.


Subject(s)
Blast Crisis/metabolism , Myeloproliferative Disorders/diagnosis , Female , Humans , Male , Myeloproliferative Disorders/pathology , Treatment Outcome
7.
Hemasphere ; 2(3): e44, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31723772

ABSTRACT

Although next-generation sequencing (NGS) has helped characterize the complex genomic landscape of myeloid malignancies, its clinical utility remains undefined. This has resulted in variable funding for NGS testing, limiting its accessibility. At our center, targeted sequencing (TAR-SEQ) using a 54-gene NGS myeloid panel is offered to all new patients referred for myeloid malignancies, as part of a prospective observational study. Here, we evaluated the diagnostic, prognostic, and potential therapeutic utility of clinical grade TAR-SEQ in the routine workflow of 179 patients with myeloproliferative neoplasms (MPN). Of 13 patients with triple negative (TN) MPN, who lacked driver mutations in JAK2, CALR, and MPL, TAR-SEQ confirmed clonal hematopoiesis in 8 patients. In patients with intermediate-risk myelofibrosis (MF), TAR-SEQ helped optimize clinical decisions in hematopoietic cell transplant (HCT)-eligible patients through identifying a high molecular risk (HMR) mutation profile. The presence of an HMR profile favored HCT in 9 patients with intermediate-1 risk MF. Absence of an HMR profile resulted in a delayed HCT strategy in 10 patients with intermediate-2 risk MF, 7 of which were stable at the last follow-up. Finally, TAR-SEQ identified patients with various targetable mutations in IDH1/2 (4%), spliceosome genes (28%), and EZH2 (7%). Some of these patients can be potential candidates for future targeted therapy trials. In conclusion, we have demonstrated that TAR-SEQ improves the characterization of TN MPN, can be integrated in clinical practice as an additional tool to refine decision making in HCT, and has the potential to identify candidates for future targeted therapy trials.

SELECTION OF CITATIONS
SEARCH DETAIL