Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
2.
Pediatr Transplant ; 28(4): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766976

ABSTRACT

BACKGROUND: The goal of this study was to assess the effect of donor type and pre-transplant immunotherapy (IST) on outcomes of hematopoietic stem cell transplantation (HSCT) for children and young adults with severe aplastic anemia (SAA). METHODS: This retrospective, multi-center study included 52 SAA patients, treated in 5 pediatric transplant programs in Florida, who received HSCT between 2010 and 2020 as the first- or second-line treatment. RESULTS: The median age at HSCT for all 52 patients was 15 years (range 1-25). The 3-year overall survival (OS) by donor type were as follows: 95% [95% CI 85.4-99] for matched related donors (MRD) (N = 24), 84% [95% CI 63.5-99] for haploidentical (N = 13), and 71% [95% CI 36-99] for matched unrelated donors (MUD) (N = 7). The 3-year OS was 81% [95% CI 69.7-99] for all patients, 90.5% [95% CI 79.5-99] for non-IST patients (N = 27), and 70% [95% CI 51-99] for IST patients (N = 24) (log-rank p = .04). Survival of haploidentical HSCT (haplo-HSCT) recipients with post-transplant cyclophosphamide (PTCy) (N = 13) was excellent for both groups: 100% for non-IST patients (N = 3) and 80% for IST patients (N = 10). The 3-year OS for patients with previous IST by donor type in groups where >5 patients were available was 78.8% [95% CI 52.3-99] for haplo-HSCT (N = 10) and 66.7% [95% CI 28.7-99] for MUD (N = 6). Although it appears that patients receiving HSCT ≥6 months after the start of IST had worse survival, the number of patients in each category was small and log-rank was not significant(p = .65). CONCLUSIONS: Patients receiving MUD and haplo-HSCT with PTCy had similar outcomes, suggesting that haplo-HSCT with PTCy could be included in randomized trials of upfront IST versus alternative donor HSCT.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Humans , Anemia, Aplastic/therapy , Adolescent , Child , Retrospective Studies , Male , Female , Child, Preschool , Young Adult , Adult , Infant , Treatment Outcome , Immunosuppression Therapy/methods , Tissue Donors , Immunosuppressive Agents/therapeutic use
3.
Transplant Cell Ther ; 30(6): 565-579, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588880

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable efficacy in relapsed/refractory (r/r) B cell malignancies, including in pediatric patients with acute lymphoblastic leukemia (ALL). Expanding this success to other hematologic and solid malignancies is an area of active research and, although challenges remain, novel solutions have led to significant progress over the past decade. Ongoing clinical trials for CAR T cell therapy for T cell malignancies and acute myeloid leukemia (AML) have highlighted challenges, including antigen specificity with off-tumor toxicity and persistence concerns. In T cell malignancies, notable challenges include CAR T cell fratricide and prolonged T cell aplasia, which are being addressed with strategies such as gene editing and suicide switch technologies. In AML, antigen identification remains a significant barrier, due to shared antigens across healthy hematopoietic progenitor cells and myeloid blasts. Strategies to limit persistence and circumvent the immunosuppressive tumor microenvironment (TME) created by AML are also being explored. CAR T cell therapies for central nervous system and solid tumors have several challenges, including tumor antigen heterogeneity, immunosuppressive and hypoxic TME, and potential for off-target toxicity. Numerous CAR T cell products have been designed to overcome these challenges, including "armored" CARs and CAR/T cell receptor (TCR) hybrids. Strategies to enhance CAR T cell delivery, augment CAR T cell performance in the TME, and ensure the safety of these products have shown promising results. In this manuscript, we will review the available evidence for CAR T cell use in T cell malignancies, AML, central nervous system (CNS), and non-CNS solid tumor malignancies, and recommend areas for future research.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Child , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Adolescent , Adult , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/therapeutic use , Tumor Microenvironment/immunology
4.
Transplant Cell Ther ; 30(1): 75.e1-75.e11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37816472

ABSTRACT

Treatment with tisagenlecleucel (tisa-cel) achieves excellent complete remission rates in children and young adults with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL), but approximately 50% maintain long-term remission. Consolidative hematopoietic stem cell transplantation (cHSCT) is a potential strategy to reduce relapse risk, but it carries substantial short- and long-term toxicities. Additionally, several strategies for management of B cell recovery (BCR) and next-generation sequencing (NGS) positivity post-tisa-cel exist, without an accepted standard. We hypothesized that practice preferences surrounding cHSCT, as well as management of BCR and NGS positivity, varies across tisa-cel-prescribing physicians and sought to characterize current practice preferences. A survey focusing on preferences regarding the use of cHSCT, management of BCR, and NGS positivity was distributed to physicians who prescribe tisa-cel for children and young adults with B-ALL. Responses were collected from August 2022 to April 2023. Fifty-nine unique responses were collected across 43 institutions. All respondents prescribed tisa-cel for children and young adults. The clinical focus of respondents was HSCT in 71%, followed by leukemia/lymphoma in 24%. For HSCT-naive patients receiving tisa-cel, 57% of respondents indicated they made individualized decisions for cHSCT based on patient factors, whereas 22% indicated they would avoid cHSCT and 21% indicated they would pursue cHSCT when feasible. Certain factors influenced >50% of respondents towards recommending cHSCT (either an increased likelihood of recommending or always recommending), including preinfusion disease burden >25%, primary refractory B-ALL, M3 bone marrow following reinduction for relapse, KMT2A-rearranged B-ALL, history of blinatumomab nonresponse, and HSCT-naive status. Most respondents indicated they would pursue HSCT for HSCT-naive, total body irradiation (TBI) recipients with BCR before 6 months post-tisa-cel or with NGS positivity at 1 or 3 months post-tisa-cel, although there was variability in responses regarding whether to proceed to HSCT directly or provide intervening therapy prior to HSCT. Fewer respondents recommended HSCT for BCR or NGS positivity in patients with a history of HSCT, in noncandidates for TBI, and in patients with trisomy 21. The results of this survey indicate there exists significant practice variability regarding the use of cHSCT, as well as interventions for post-tisa-cel BCR or NGS positivity. These results highlight areas in which ongoing clinical trials could inform more standardized practice.


Subject(s)
Burkitt Lymphoma , Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Young Adult , Hematopoietic Stem Cell Transplantation/methods , Receptors, Antigen, T-Cell/therapeutic use , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence
5.
Transplant Cell Ther ; 30(1): 38-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821079

ABSTRACT

Chimeric antigen receptor (CAR) T cell (CAR-T) therapy has emerged as a revolutionary cancer treatment modality, particularly in children and young adults with B cell malignancies. Through clinical trials and real-world experience, much has been learned about the unique toxicity profile of CAR-T therapy. The past decade brought advances in identifying risk factors for severe inflammatory toxicities, investigating preventive measures to mitigate these toxicities, and exploring novel strategies to manage refractory and newly described toxicities, infectious risks, and delayed effects, such as cytopenias. Although much progress has been made, areas needing further improvements remain. Limited guidance exists regarding initial administration of tocilizumab with or without steroids and the management of inflammatory toxicities refractory to these treatments. There has not been widespread adoption of preventive strategies to mitigate inflammation in patients at high risk of severe toxicities, particularly children. Additionally, the majority of research related to CAR-T toxicity prevention and management has focused on adult populations, with only a few pediatric-specific studies published to date. Given that children and young adults undergoing CAR-T therapy represent a unique population with different underlying disease processes, physiology, and tolerance of toxicities than adults, it is important that studies be conducted to evaluate acute, delayed, and long-term toxicities following CAR-T therapy in this younger age group. In this pediatric-focused review, we summarize key findings on CAR-T therapy-related toxicities over the past decade, highlight emergent CAR-T toxicities, and identify areas of greatest need for ongoing research.


Subject(s)
Receptors, Chimeric Antigen , Humans , Child , Receptors, Chimeric Antigen/therapeutic use , Receptors, Antigen, T-Cell , T-Lymphocytes , Immunotherapy, Adoptive/adverse effects , Risk Factors
6.
Front Immunol ; 14: 1239132, 2023.
Article in English | MEDLINE | ID: mdl-37965315

ABSTRACT

Introduction: Mediport use as a clinical option for the administration of chimeric antigen receptor T cell (CAR T cell) therapy in patients with B-cell malignancies has yet to be standardized. Concern for mediport dislodgement, cell infiltration, and ineffective therapy delivery to systemic circulation has resulted in variable practice with intravenous administration of CAR T cell therapy. With CAR T cell commercialization, it is important to establish practice standards for CAR T cell delivery. We conducted a study to establish usage patterns of mediports in the clinical setting and provide a standard of care recommendation for mediport use as an acceptable form of access for CAR T cell infusions. Methods: In this retrospective cohort study, data on mediport use and infiltration rate was collected from a survey across 34 medical centers in the Pediatric Real-World CAR Consortium, capturing 504 CAR T cell infusion routes across 489 patients. Data represents the largest, and to our knowledge sole, report on clinical CAR T cell infusion practice patterns since FDA approval and CAR T cell commercialization in 2017. Results: Across 34 sites, all reported tunneled central venous catheters, including Broviac® and Hickman® catheters, as accepted standard venous options for CAR T cell infusion. Use of mediports as a standard clinical practice was reported in 29 of 34 sites (85%). Of 489 evaluable patients with reported route of CAR T cell infusion, 184 patients were infused using mediports, with no reported incidences of CAR T cell infiltration. Discussion/Conclusion: Based on current clinical practice, mediports are a commonly utilized form of access for CAR T cell therapy administration. These findings support the safe practice of mediport usage as an accepted standard line option for CAR T cell infusion.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Humans , Child , Retrospective Studies , Infusions, Intravenous , Administration, Intravenous
7.
Cureus ; 15(10): e47885, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021600

ABSTRACT

INTRODUCTION: Cellular therapies are frequently studied in clinical trials for pediatric patients with malignant disease. Characteristics of ongoing and completed cellular therapy clinical trials in the U.S. involving children and adolescents have not previously been reported. METHODS: We searched ClinicalTrials.gov for clinical trials involving cellular therapies enrolling patients under 18 years of age in the U.S. Trials were initially stratified into child-only (maximum age of eligibility <18 years), child/adolescent and young adult (AYA) (maximum age of eligibility ≤21 years), and child/adult (maximum age of eligibility >21 years). Descriptive characteristics and trends over time were analyzed. RESULTS: We included 202 trials posted 2007-2022. Of the 202 trials, only three trials were child-only; thus, our subsequent analysis focused on comparing child/AYA (≤21 years) and child/adult trials (>21 years). One hundred sixty-nine (84%) enrolled both child and adult populations. The vast majority of trials were early phase (phase 1, 1/2, and 2, 198/202, 98%). Chimeric antigen receptor T cell therapies were most commonly studied (88/202, 44%), while natural-killer cell therapies were most common in child/AYA trials (42% vs. 16%). Most trials were single institution-only (130/202, 64%) and did not receive industry funding (163/202, 81%). Studies with industry funding were more likely to be multicenter (64% vs. 29%) and international (31% vs. 0.6%). Notably, no central nervous system tumor-specific trials had industry funding. There was no difference in therapy type based on funding source. Yearly new trial activations increased over the time period studied (p=0.01). CONCLUSION: The frequency of cellular therapy trial activations enrolling child/AYA patients with cancer in the U.S. has increased over time. Most studies were phase 1 or 2, single institution-only, and not industry-supported. Future opportunities for cell therapy for pediatric cancer should include multi-institutional approaches.

9.
Blood Adv ; 7(12): 2758-2771, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36857419

ABSTRACT

Chimeric antigen receptor-associated hemophagocytic lymphohistiocytosis (HLH)-like toxicities (LTs) involving hyperferritinemia, multiorgan dysfunction, coagulopathy, and/or hemophagocytosis are described as occurring in a subset of patients with cytokine release syndrome (CRS). Case series report poor outcomes for those with B-cell acute lymphoblastic leukemia (B-ALL) who develop HLH-LTs, although larger outcomes analyses of children and young adults (CAYAs) with B-ALL who develop these toxicities after the administration of commercially available tisagenlecleucel are not described. Using a multi-institutional database of 185 CAYAs with B-ALL, we conducted a retrospective cohort study including groups that developed HLH-LTs, high-grade (HG) CRS without HLH-LTs, or no to low-grade (NLG) CRS without HLH-LTs. Primary objectives included characterizing the incidence, outcomes, and preinfusion factors associated with HLH-LTs. Among 185 CAYAs infused with tisagenlecleucel, 26 (14.1%) met the criteria for HLH-LTs. One-year overall survival and relapse-free survival were 25.7% and 4.7%, respectively, in those with HLH-LTs compared with 80.1% and 57.6%, respectively, in those without. In multivariable analysis for death, meeting criteria for HLH-LTs carried a hazard ratio of 4.61 (95% confidence interval, 2.41-8.83), controlling for disease burden, age, and sex. Patients who developed HLH-LTs had higher pretisagenlecleucel disease burden, ferritin, and C-reactive protein levels and lower platelet and absolute neutrophil counts than patients with HG- or NLG-CRS without HLH-LTs. Overall, CAYAs with B-ALL who developed HLH-LTs after tisagenlecleucel experienced high rates of relapse and nonrelapse mortality, indicating the urgent need for further investigations into prevention and optimal management of patients who develop HLH-LTs after tisagenlecleucel.


Subject(s)
Burkitt Lymphoma , Lymphohistiocytosis, Hemophagocytic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Child , Young Adult , Lymphohistiocytosis, Hemophagocytic/etiology , Retrospective Studies , Receptors, Antigen, T-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/complications , Burkitt Lymphoma/complications , Chronic Disease
10.
Transplant Cell Ther ; 29(7): 438.e1-438.e16, 2023 07.
Article in English | MEDLINE | ID: mdl-36906275

ABSTRACT

T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Neurotoxicity Syndromes , Adult , Humans , United States , Child , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Neurotoxicity Syndromes/etiology , T-Lymphocytes , Immunotherapy, Adoptive/adverse effects , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/complications
11.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36707090

ABSTRACT

BACKGROUND: Immunocompromised patients are at increased risk of SARS-CoV-2 infections. Patients undergoing chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory B-cell malignancies are uniquely immunosuppressed due to CAR T-mediated B-cell aplasia (BCA). While SARS-CoV-2 mortality rates of 33%-40% are reported in adult CAR T-cell recipients, outcomes in pediatric and young adult CAR T-cell recipients are limited. METHODS: We created an international retrospective registry of CAR T recipients aged 0-30 years infected with SARS-CoV-2 within 2 months prior to or any time after CAR T infusion. SARS-CoV-2-associated illness was graded as asymptomatic, mild, moderate, or severe COVID-19, or multisystem inflammatory syndrome in children (MIS-C). To assess for risk factors associated with significant SARS-CoV-2 infections (infections requiring hospital admission for respiratory distress or supplemental oxygen), univariate and multivariable regression analyses were performed. RESULTS: Nine centers contributed 78 infections in 75 patients. Of 70 SARS-CoV-2 infections occurring after CAR T infusion, 13 (18.6%) were classified as asymptomatic, 37 (52.9%) mild, 11 (15.7%) moderate, and 6 (8.6%) severe COVID-19. Three (4.3%) were classified as MIS-C. BCA was not significantly associated with infection severity. Prior to the emergence of the Omicron variant, of 47 infections, 19 (40.4%) resulted in hospital admission and 7 (14.9%) required intensive care, while after the emergence of the Omicron variant, of 23 infections, only 1 (4.3%) required admission and the remaining 22 (95.7%) had asymptomatic or mild COVID-19. Death occurred in 3 of 70 (4.3%); each death involved coinfection or life-threatening condition. In a multivariable model, factors associated with significant SARS-CoV-2 infection included having two or more comorbidities (OR 7.73, CI 1.05 to 74.8, p=0.048) and age ≥18 years (OR 9.51, CI 1.90 to 82.2, p=0.014). In the eight patients infected with SARS-CoV-2 before CAR T, half of these patients had their CAR T infusion delayed by 15-30 days. CONCLUSIONS: In a large international cohort of pediatric and young adult CAR-T recipients, SARS-CoV-2 infections resulted in frequent hospital and intensive care unit admissions and were associated with mortality in 4.3%. Patients with two or more comorbidities or aged ≥18 years were more likely to experience significant illness. Suspected Omicron infections were associated with milder disease.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia, Viral , Receptors, Chimeric Antigen , Humans , Child , Young Adult , Adolescent , Adult , COVID-19/complications , SARS-CoV-2 , Retrospective Studies , Pneumonia, Viral/complications , Coronavirus Infections/complications , Betacoronavirus , Neoplasm Recurrence, Local , Registries , Cell- and Tissue-Based Therapy
12.
J Pediatr Hematol Oncol ; 44(2): e507-e511, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35200224

ABSTRACT

Gemtuzumab ozogamicin (GO) is an anti-CD33 antibody-tumor antibiotic conjugate with proven efficacy in pediatric and adult patients with CD33+ acute myeloid leukemia. Adverse effects commonly associated with GO include hyperbilirubinemia, elevated transaminases, and sinusoidal obstruction syndrome. Cardiotoxicity has not been a commonly described adverse event. We describe 2 pediatric patients with relapsed/refractory acute myeloid leukemia who received fractionated GO monotherapy and subsequently developed severe acute left ventricular dysfunction. Both patients achieved remission, recovered cardiac function with medical therapy, and tolerated subsequent stem cell transplantation.


Subject(s)
Gemtuzumab , Leukemia, Myeloid, Acute , Ventricular Dysfunction, Left , Child , Gemtuzumab/adverse effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Ventricular Dysfunction, Left/chemically induced
13.
Blood Cancer Discov ; 3(2): 90-94, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35015687

ABSTRACT

SUMMARY: Here we review the pathophysiology and management of cytokine release syndrome (CRS) secondary to immunotherapy, and potential options for CRS refractory to IL6 inhibition and glucocorticoids, for which there are no proven treatments. To illustrate, we describe a patient with B-cell acute lymphoblastic leukemia who developed refractory grade 4 CRS following CD19-directed chimeric antigen receptor T-cell therapy, treated with tocilizumab, methylprednisolone, siltuximab, and the IFNγ inhibitor emapalumab, with complete remission from leukemia for 12 months. See related article by Bailey et al., p. 136 (15).


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Cytokine Release Syndrome/drug therapy , Humans , Immunotherapy, Adoptive/adverse effects , Interferon-gamma , Macrophage Activation , Receptors, Chimeric Antigen/immunology , T-Lymphocytes
14.
Nat Commun ; 12(1): 7222, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893640

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Subject(s)
COVID-19/complications , Endothelium, Vascular/physiopathology , Interferon-gamma/immunology , Proteome , Systemic Inflammatory Response Syndrome/pathology , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Chemokine CXCL9 , Child , Group II Phospholipases A2 , Humans , Inflammation , Interleukin-10 , Proteomics , Systemic Inflammatory Response Syndrome/metabolism , Vascular Diseases
15.
medRxiv ; 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33907759

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. We performed a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesized that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. Protein signatures demonstrated overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is a key marker of MIS-C that associates with TMA. We found that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.

16.
Sci Immunol ; 6(57)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653907

ABSTRACT

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Subject(s)
COVID-19/immunology , Lymphocyte Activation , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aging/immunology , Child , Child, Preschool , Female , Flow Cytometry , Humans , Leukopenia/immunology , Male , Young Adult
17.
Fac Rev ; 10: 11, 2021.
Article in English | MEDLINE | ID: mdl-33659929

ABSTRACT

The prognosis for childhood cancer has improved considerably over the past 50 years. This improvement is attributed to well-designed clinical trials which have incorporated chemotherapy, surgery, and radiation. With an increased understanding of cancer biology and genetics, we have entered an era of precision medicine and immunotherapy that provides potential for improved cure rates. However, preclinical evaluation of these therapies is more nuanced, requiring more robust animal models. Evaluation of targeted treatments requires molecularly defined xenograft models that can capture the diversity within pediatric cancer. The development of novel immunotherapies ideally involves the use of animal models that can accurately recapitulate the human immune response. In this review, we provide an overview of xenograft models for childhood cancers, review successful examples of novel therapies translated from xenograft models to the clinic, and describe the modern tools of xenograft biobanks and humanized xenograft models for the study of immunotherapies.

18.
J Pediatric Infect Dis Soc ; 10(5): 669-673, 2021 May 28.
Article in English | MEDLINE | ID: mdl-33263756

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibody responses in children remain poorly characterized. Here, we show that pediatric patients with multisystem inflammatory syndrome in children (MIS-C) possess higher SARS-CoV-2 spike immunoglobulin G (IgG) titers compared with those with severe coronavirus disease 2019, likely reflecting a longer time since the onset of infection in MIS-C patients.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/immunology , COVID-19 Serological Testing , Child , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , SARS-CoV-2 , Severity of Illness Index
19.
Blood Adv ; 4(23): 6051-6063, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33290544

ABSTRACT

Most children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have mild or minimal disease, with a small proportion developing severe disease or multisystem inflammatory syndrome in children (MIS-C). Complement-mediated thrombotic microangiopathy (TMA) has been associated with SARS-CoV-2 infection in adults but has not been studied in the pediatric population. We hypothesized that complement activation plays an important role in SARS-CoV-2 infection in children and sought to understand if TMA was present in these patients. We enrolled 50 hospitalized pediatric patients with acute SARS-CoV-2 infection (n = 21, minimal coronavirus disease 2019 [COVID-19]; n = 11, severe COVID-19) or MIS-C (n = 18). As a biomarker of complement activation and TMA, soluble C5b9 (sC5b9, normal 247 ng/mL) was measured in plasma, and elevations were found in patients with minimal disease (median, 392 ng/mL; interquartile range [IQR], 244-622 ng/mL), severe disease (median, 646 ng/mL; IQR, 203-728 ng/mL), and MIS-C (median, 630 ng/mL; IQR, 359-932 ng/mL) compared with 26 healthy control subjects (median, 57 ng/mL; IQR, 9-163 ng/mL; P < .001). Higher sC5b9 levels were associated with higher serum creatinine (P = .01) but not age. Of the 19 patients for whom complete clinical criteria were available, 17 (89%) met criteria for TMA. A high proportion of tested children with SARS-CoV-2 infection had evidence of complement activation and met clinical and diagnostic criteria for TMA. Future studies are needed to determine if hospitalized children with SARS-CoV-2 should be screened for TMA, if TMA-directed management is helpful, and if there are any short- or long-term clinical consequences of complement activation and endothelial damage in children with COVID-19 or MIS-C.


Subject(s)
COVID-19/diagnosis , Thrombotic Microangiopathies/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Adolescent , Antibodies, Viral/blood , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Child , Child, Preschool , Cluster Analysis , Complement Membrane Attack Complex/metabolism , Creatinine/blood , Female , Humans , Male , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombotic Microangiopathies/complications
20.
medRxiv ; 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32995826

ABSTRACT

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.

SELECTION OF CITATIONS
SEARCH DETAIL
...