Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 15(1): 5191, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890283

ABSTRACT

A recent clinical trial demonstrated that Bacille Calmette-Guérin (BCG) revaccination of adolescents reduced the risk of sustained infection with Mycobacterium tuberculosis (M.tb). In a companion phase 1b trial, HVTN 602/Aeras A-042, we characterize in-depth the cellular responses to BCG revaccination or to a H4:IC31 vaccine boost to identify T cell subsets that could be responsible for the protection observed. High-dimensional clustering analysis of cells profiled using a 26-color flow cytometric panel show marked increases in five effector memory CD4+ T cell subpopulations (TEM) after BCG revaccination, two of which are highly polyfunctional. CITE-Seq single-cell analysis shows that the activated subsets include an abundant cluster of Th1 cells with migratory potential. Additionally, a small cluster of Th17 TEM cells induced by BCG revaccination expresses high levels of CD103; these may represent recirculating tissue-resident memory cells that could provide pulmonary immune protection. Together, these results identify unique populations of CD4+ T cells with potential to be immune correlates of protection conferred by BCG revaccination.


Subject(s)
BCG Vaccine , CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Adolescent , CD4-Positive T-Lymphocytes/immunology , BCG Vaccine/immunology , Immunization, Secondary , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/microbiology , Female , Male , Phenotype , Single-Cell Analysis , Th1 Cells/immunology , Immunologic Memory/immunology
2.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Article in English | MEDLINE | ID: mdl-34486798

ABSTRACT

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/metabolism , Host-Pathogen Interactions/physiology , Animals , Azetidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , Janus Kinase 1/metabolism , Lipopolysaccharides/toxicity , Machine Learning , Male , Mice , Mice, Inbred C57BL , Neutrophils/virology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyridazines/pharmacology , RAW 264.7 Cells , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology
3.
J Immunol Methods ; 453: 37-43, 2018 02.
Article in English | MEDLINE | ID: mdl-29174717

ABSTRACT

For more than five years, high-dimensional mass cytometry has been employed to study immunology. However, these studies have typically been performed in one laboratory on one or few instruments. We present the results of a six-center study using healthy control human peripheral blood mononuclear cells (PBMCs) and commercially available reagents to test the intra-site and inter-site variation of mass cytometers and operators. We used prestained controls generated by the primary center as a reference to compare against samples stained at each individual center. Data were analyzed at the primary center, including investigating the effects of two normalization methods. All six sites performed similarly, with CVs for both Frequency of Parent and median signal intensity (MSI) values<30%. Increased background was seen when using the premixed antibody cocktail aliquots at each site, suggesting that cocktails are best made fresh. Both normalization methods tested performed adequately for normalizing MSI values between centers. Clustering algorithms revealed slight differences between the prestained and the sites-stained samples, due mostly to the increased background of a few antibodies. Therefore, we believe that multicenter mass cytometry assays are feasible.


Subject(s)
Flow Cytometry/methods , Leukocytes, Mononuclear/physiology , Mass Spectrometry/methods , Antibodies/metabolism , Healthy Volunteers , Humans , Immunophenotyping , Pilot Projects , Reference Standards
4.
J Immunol ; 199(1): 107-118, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28576979

ABSTRACT

Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αß-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.


Subject(s)
Immunity, Innate , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Malaria, Falciparum/immunology , Adult , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Interferon-gamma/immunology , Malaria Vaccines , Malaria, Falciparum/parasitology , Male , Mucosal-Associated Invariant T Cells/immunology , Parasitemia/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology , Sporozoites/immunology , Tanzania , Time Factors , Young Adult
5.
JCI Insight ; 1(8)2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27331143

ABSTRACT

Conventional memory CD8+ T cells and mucosal-associated invariant T cells (MAIT cells) are found in blood, liver, and mucosal tissues and have similar effector potential following activation, specifically expression of IFN-γ and granzyme B. To better understand each subset's unique contributions to immunity and pathology, we interrogated inflammation- and TCR-driven activation requirements using human memory CD8+ T and MAIT cells isolated from blood and mucosal tissue biopsies in ex vivo functional assays and single cell gene expression experiments. We found that MAIT cells had a robust IFN-γ and granzyme B response to inflammatory signals but limited responsiveness when stimulated directly via their TCR. Importantly, this is not due to an overall hyporesponsiveness to TCR signals. When delivered together, TCR and inflammatory signals synergize to elicit potent effector function in MAIT cells. This unique control of effector function allows MAIT cells to respond to the same TCR signal in a dichotomous and situation-specific manner. We propose that this could serve to prevent responses to antigen in noninflamed healthy mucosal tissue, while maintaining responsiveness and great sensitivity to inflammation-eliciting infections. We discuss the implications of these findings in context of inflammation-inducing damage to tissues such as BM transplant conditioning or HIV infection.

6.
J Virol ; 88(15): 8242-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24829343

ABSTRACT

UNLABELLED: The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02(+)) participants than in A*02(-) participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02(+) participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02(+) participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials. IMPORTANCE: The RV144 trial was the first to show efficacy against HIV-1 infection. Subsequently, much effort has been directed toward understanding the mechanisms of protection. Here, we conducted a T-cell-based sieve analysis, which compared the genetic sequences of viruses isolated from infected vaccine and placebo recipients. Though we hypothesized that the observed sieve effect indicated postacquisition T-cell selection, we also found that vaccine efficacy was greater for participants who expressed HLA A*02, an allele implicated in the sieve analysis. Though HLA alleles have been associated with disease progression and viral load in HIV-1 infection, these data are the first to suggest the association of a class I HLA allele and vaccine efficacy. While these statistical analyses do not provide mechanistic evidence of protection in RV144, they generate testable hypotheses for the HIV vaccine community and they highlight the importance of assessing the impact of host immune genetics in vaccine-induced immunity and protection. (This study has been registered at ClinicalTrials.gov under registration no. NCT00223080.).


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV-1/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , AIDS Vaccines/administration & dosage , Cohort Studies , Genetic Association Studies , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , Humans , T-Lymphocytes/immunology
7.
J Cell Biol ; 198(3): 439-56, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22851315

ABSTRACT

To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)-related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Products, gag/genetics , HIV-1/metabolism , Proto-Oncogene Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Argonaute Proteins/metabolism , COS Cells , Capsid/metabolism , Cell Membrane/metabolism , Chlorocebus aethiops , Gene Products, gag/metabolism , Humans , Microscopy, Immunoelectron/methods , Mutation , T-Lymphocytes/enzymology
8.
J Virol ; 86(16): 8499-506, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22647704

ABSTRACT

Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interferon regulatory factor 3 (IRF3), a central transcription factor driving host cell innate immunity. IRF3 plays a major role in pathogen recognition receptor (PRR) signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Here we interrogate the cellular responses to target cell infection with Vpu-deficient HIV-1 strains. Remarkably, in the absence of Vpu, HIV-1 triggers a potent intracellular innate immune response that suppresses infection. Thus, HIV-1 can be recognized by PRRs within the host cell to trigger an innate immune response, and this response is unmasked only in the absence of Vpu. Vpu modulation of IRF3 therefore prevents virus induction of specific innate defense programs that could otherwise limit infection. These observations show that HIV-1 can indeed be recognized as a pathogen in infected cells and provide a novel and effective platform for defining the native innate immune programs of target cells of HIV-1 infection.


Subject(s)
HIV-1/immunology , Human Immunodeficiency Virus Proteins/deficiency , Immunity, Innate , Signal Transduction , Viral Regulatory and Accessory Proteins/deficiency , Adult , Cells, Cultured , Female , HIV-1/genetics , HIV-1/pathogenicity , Humans , Immune Evasion , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocytes/immunology , Lymphocytes/virology , Macrophages/immunology , Macrophages/virology
9.
J Virol ; 86(16): 8367-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22593165

ABSTRACT

HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.


Subject(s)
HIV-1/pathogenicity , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Immune Evasion , Interferon Regulatory Factor-3/metabolism , Lysosomes/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Line , Humans , Hydrolysis , Molecular Sequence Data , Protein Interaction Mapping , Sequence Homology
10.
J Virol ; 85(15): 7523-34, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21593162

ABSTRACT

HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.


Subject(s)
Demography , Evolution, Molecular , HIV Infections/virology , HIV-1/genetics , Adult , Base Sequence , DNA Primers , Enzyme-Linked Immunosorbent Assay , HIV Infections/transmission , Homosexuality, Male , Humans , Male , Polymerase Chain Reaction , Stochastic Processes
11.
PLoS One ; 6(1): e15639, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21283794

ABSTRACT

Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naïve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection.


Subject(s)
Biological Evolution , HIV Infections/immunology , HIV-1/genetics , Immune Evasion/genetics , T-Lymphocytes, Cytotoxic/immunology , Epitopes, T-Lymphocyte , HIV-1/immunology , Humans , Mutation
12.
J Biol Chem ; 285(36): 27753-66, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20615867

ABSTRACT

In HIV-1-infected individuals, G-to-A hypermutation is found in HIV-1 DNA isolated from peripheral blood mononuclear cells (PBMCs). These mutations are thought to result from editing by one or more host enzymes in the APOBEC3 (A3) family of cytidine deaminases, which act on CC (APOBEC3G) and TC (other A3 proteins) dinucleotide motifs in DNA (edited cytidine underlined). Although many A3 proteins display high levels of deaminase activity in model systems, only low levels of A3 deaminase activity have been found in primary cells examined to date. In contrast, here we report high levels of deaminase activity at TC motifs when whole PBMCs or isolated primary monocyte-derived cells were treated with interferon-alpha (IFNalpha) or IFNalpha-inducing toll-like receptor ligands. Induction of TC-specific deaminase activity required new transcription and translation and correlated with the appearance of two APOBEC3A (A3A) isoforms. Knockdown of A3A in monocytes with siRNA abolished TC-specific deaminase activity, confirming that A3A isoforms are responsible for all TC-specific deaminase activity observed. Both A3A isoforms appear to be enzymatically active; moreover, our mutational studies raise the possibility that the smaller isoform results from internal translational initiation. In contrast to the high levels of TC-specific activity observed in IFNalpha-treated monocytes, CC-specific activity remained low in PBMCs, suggesting that A3G deaminase activity is relatively inhibited, unlike that of A3A. Together, these findings suggest that deaminase activity of A3A isoforms in monocytes and macrophages may play an important role in host defense against viruses.


Subject(s)
Cytidine Deaminase/metabolism , Gene Expression Regulation, Enzymologic/immunology , Immunity, Innate/genetics , Monocytes/enzymology , Monocytes/immunology , Proteins/metabolism , Repetitive Sequences, Nucleic Acid , Signal Transduction/genetics , APOBEC-3G Deaminase , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cell Line , Cytidine Deaminase/chemistry , Cytidine Deaminase/deficiency , Cytidine Deaminase/genetics , Gene Knockdown Techniques , Humans , Interferon-alpha/metabolism , Macrophages/cytology , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Molecular Sequence Data , Monocytes/cytology , Monocytes/metabolism , Protein Biosynthesis/immunology , Proteins/chemistry , Proteins/genetics , RNA, Small Interfering/genetics , Substrate Specificity , Toll-Like Receptors/metabolism , Transcription, Genetic/immunology
13.
J Infect Dis ; 200(12): 1825-33, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19909083

ABSTRACT

BACKGROUND: The epitope specificities and antiviral activities of class I HLA-restricted CD8(+) T cells, especially those induced during human immunodeficiency virus type 1 (HIV-1) primary infection, are important considerations in designing HIV-1 vaccines. Conserved epitopes may be more commonly and persistently recognized than variable epitopes, as they may be more likely to be present in infecting viruses. However, some studies have shown preferential or similar targeting of variable versus conserved epitopes during primary infection. METHODS: We analyzed cytotoxic T-lymphocyte (CTL) responses toward predefined conserved and variable epitopes in 45 subjects during primary (n = 34) and/or chronic infection (n = 16). RESULTS: Conserved and variable CTL epitopes were recognized with similar probabilities, whereas conserved epitopes generally elicited subdominant responses during both primary and chronic infection. During primary infection, CTL responses against Gag versus responses against Env and variable epitopes tended to be associated with lower and higher viral loads, respectively. During chronic infection, Env-specific responses tended to be associated with lower CD4(+) cell counts. CONCLUSIONS: Subdominant CTL recognition of conserved HIV-1 epitopes commonly occurs from the primary through chronic stages of HIV-1 infection. These findings underscore the challenge in designing T cell-based vaccines that can induce immunodominant CTL responses to conserved HIV-1 regions.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , Humans , Male
14.
J Virol ; 83(20): 10395-405, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19706707

ABSTRACT

Interferon regulatory factor 3 (IRF-3) is essential for innate intracellular immune defenses that limit virus replication, but these defenses fail to suppress human immunodeficiency virus (HIV) infection, which can ultimately associate with opportunistic coinfections and the progression to AIDS. Here, we examined antiviral defenses in CD4+ cells during virus infection and coinfection, revealing that HIV type 1 (HIV-1) directs a global disruption of innate immune signaling and supports a coinfection model through suppression of IRF-3. T cells responded to paramyxovirus infection to activate IRF-3 and interferon-stimulated gene expression, but they failed to mount a response against HIV-1. The lack of response associated with a marked depletion of IRF-3 but not IRF-7 in HIV-1-infected cells, which supported robust viral replication, whereas ectopic expression of active IRF-3 suppressed HIV-1 infection. IRF-3 depletion was dependent on a productive HIV-1 replication cycle and caused the specific disruption of Toll-like receptor and RIG-I-like receptor innate immune signaling that rendered cells permissive to secondary virus infection. IRF-3 levels were reduced in vivo within CD4+ T cells from patients with acute HIV-1 infection but not from long-term nonprogressors. Our results indicate that viral suppression of IRF-3 promotes HIV-1 infection by disrupting IRF-3-dependent signaling pathways and innate antiviral defenses of the host cell. IRF-3 may direct an innate antiviral response that regulates HIV-1 replication and viral set point while governing susceptibility to opportunistic virus coinfections.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV-1/pathogenicity , Immunity, Innate/physiology , Interferon Regulatory Factor-3/metabolism , Signal Transduction , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Cells, Cultured , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Female , HIV Infections/physiopathology , HIV Infections/virology , Humans , Interferon Regulatory Factor-3/genetics , Leukocytes, Mononuclear , Receptors, Immunologic , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Virus Replication
15.
J Virol ; 83(20): 10821-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19706711

ABSTRACT

Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3' half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.


Subject(s)
Genetic Variation , HIV Infections/immunology , HIV Infections/prevention & control , HIV Long-Term Survivors , HIV Seronegativity/immunology , HIV-1/genetics , HIV-1/pathogenicity , Sexual Partners , T-Lymphocytes, Cytotoxic/immunology , Cytotoxicity, Immunologic/immunology , HIV Infections/transmission , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , HLA-B27 Antigen/metabolism , Humans , Lymphocyte Activation/immunology , Male , Sexual Behavior , Unsafe Sex
16.
PLoS Pathog ; 5(4): e1000365, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19343217

ABSTRACT

Human lymphocyte antigen (HLA)-restricted CD8(+) cytotoxic T lymphocytes (CTL) target and kill HIV-infected cells expressing cognate viral epitopes. This response selects for escape mutations within CTL epitopes that can diminish viral replication fitness. Here, we assess the fitness impact of escape mutations emerging in seven CTL epitopes in the gp120 Env and p24 Gag coding regions of an individual followed longitudinally from the time of acute HIV-1 infection, as well as some of these same epitopes recognized in other HIV-1-infected individuals. Nine dominant mutations appeared in five gp120 epitopes within the first year of infection, whereas all four mutations found in two p24 epitopes emerged after nearly two years of infection. These mutations were introduced individually into the autologous gene found in acute infection and then placed into a full-length, infectious viral genome. When competed against virus expressing the parental protein, fitness loss was observed with only one of the nine gp120 mutations, whereas four had no effect and three conferred a slight increase in fitness. In contrast, mutations conferring CTL escape in the p24 epitopes significantly decreased viral fitness. One particular escape mutation within a p24 epitope was associated with reduced peptide recognition and high viral fitness costs but was replaced by a fitness-neutral mutation. This mutation appeared to alter epitope processing concomitant with a reduced CTL response. In conclusion, CTL escape mutations in HIV-1 Gag p24 were associated with significant fitness costs, whereas most escape mutations in the Env gene were fitness neutral, suggesting a balance between immunologic escape and replicative fitness costs.


Subject(s)
HIV-1/immunology , Mutation , T-Lymphocytes, Cytotoxic/immunology , Virus Replication , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , Evolution, Molecular , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/genetics , HIV-1/physiology , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
17.
Blood ; 112(8): 3484-7, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18698002

ABSTRACT

This study tested whether donor-derived HIV-specific immune responses could be detected when viral replication was completely suppressed by the continuous administration of highly active antiretroviral therapy (HAART). A regimen of fludarabine and 200 cGy total body irradiation was followed by infusion of allogeneic donor peripheral blood cells and posttransplantation cyclosporine and mycophenolate mofetil. Viral load, lymphocyte counts, and HIV-1-specific CD8(+) cell immune responses were compared before and after hematopoietic cell transplantation (HCT). Uninterrupted administration of HAART was feasible during nonmyeloablative conditioning and after HCT. The HIV RNA remained undetectable and no HIV-associated infections were observed. CD8(+) T-cell responses targeting multiple epitopes were detected before HCT. After HCT a different pattern of donor-derived HIV-specific CTL responses emerged by day +80, presumably primed in vivo. We conclude that allogeneic HCT offers the unique ability to characterize de novo HIV-1-specific immune responses. This clinical trial was registered at ClinicalTrials.gov (identifier: NCT00112593).


Subject(s)
CD8-Positive T-Lymphocytes/virology , HIV Infections/complications , HIV Infections/drug therapy , HIV-1/metabolism , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/drug therapy , Transplantation, Homologous , Adult , Antiretroviral Therapy, Highly Active , Cyclosporine/administration & dosage , Epitopes/chemistry , Humans , Immune System , Immunosuppressive Agents/administration & dosage , Male , Mycophenolic Acid/administration & dosage , Mycophenolic Acid/analogs & derivatives
18.
J Virol ; 82(1): 495-502, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17942528

ABSTRACT

Cytolytic T lymphocytes (CTL) play a major role in controlling human immunodeficiency virus type 1 (HIV-1) infection. To evade immune pressure, HIV-1 is selected at targeted CTL epitopes, which may consequentially alter viral replication fitness. In our longitudinal investigations of the interplay between T-cell immunity and viral evolution following acute HIV-1 infection, we observed in a treatment-naïve patient the emergence of highly avid, gamma interferon-secreting, CD8(+) CTL recognizing an HLA-Cw*0102-restricted epitope, NSPTRREL (NL8). This epitope lies in the p6(Pol) protein, located in the transframe region of the Gag-Pol polyprotein. Over the course of infection, an unusual viral escape mutation arose within the p6(Pol) epitope through insertion of a 3-amino-acid repeat, NSPT(SPT)RREL, with a concomitant insertion in the p6(Gag) late domain, PTAPP(APP). Interestingly, this p6(Pol) insertion mutation is often selected in viruses with the emergence of antiretroviral drug resistance, while the p6(Gag) late-domain PTAPP motif binds Tsg101 to permit viral budding. These results are the first to demonstrate viral evasion of immune pressure by amino acid insertions. Moreover, this escape mutation represents a novel mechanism whereby HIV-1 can alter its sequence within both the Gag and Pol proteins with potential functional consequences for viral replication and budding.


Subject(s)
Epitopes, T-Lymphocyte/genetics , HIV-1/drug effects , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , Anti-HIV Agents/pharmacology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Longitudinal Studies , Mutagenesis, Insertional , Protein Structure, Tertiary , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/chemistry , pol Gene Products, Human Immunodeficiency Virus/genetics , pol Gene Products, Human Immunodeficiency Virus/immunology
19.
J Virol ; 81(22): 12179-88, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17728222

ABSTRACT

CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.


Subject(s)
Antigenic Variation/genetics , Epitopes, T-Lymphocyte/genetics , Evolution, Molecular , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , Amino Acid Sequence , HIV-1/genetics , Humans , Molecular Sequence Data , Mutation
20.
J Immunol ; 177(10): 7406-15, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17082660

ABSTRACT

HIV-1-infected persons with HLA-B27 and -B57 alleles commonly remain healthy for decades without antiretroviral therapy. Properties of CD8+ T cells restricted by these alleles considered to confer disease protection in these individuals are elusive but important to understand and potentially elicit by vaccination. To address this, we compared CD8+ T cell function induced by HIV-1 immunogens and natural infection using polychromatic flow cytometry. HIV-1-specific CD8+ T cells from all four uninfected immunized and 21 infected subjects secreted IFN-gamma and TNF-alpha. However, CD8+ T cells induced by vaccination and primary infection, but not chronic infection, proliferated to their cognate epitopes. Notably, B27- and B57-restricted CD8+ T cells from nonprogressors exhibited greater expansion than those restricted by other alleles. Hence, CD8+ T cells restricted by certain protective alleles can resist replicative defects, which permits expansion and antiviral effector activities. Our findings suggest that the capacity to maintain CD8+ T cell proliferation, regardless of MHC-restriction, may serve as an important correlate of disease protection in the event of infection following vaccination.


Subject(s)
Alleles , Cell Proliferation , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , T-Lymphocytes/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Disease Progression , Epitopes, T-Lymphocyte/immunology , Gene Products, gag/immunology , HIV Infections/genetics , HIV Long-Term Survivors , Humans , Lymphocyte Activation/genetics , Middle Aged , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...